
Aleo snarkVM, snarkOS, and
BullsharkBFT
Security Assessment

November 28, 2023

Prepared for:

Aleo Systems

Prepared by: Filipe Casal, Opal Wright, Joop van de Pol, and Dominik Czarnota



About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Aleo Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com


Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Aleo
Systems under the terms of the project statement of work and has been made public at
Aleo Systems’ request. Material within this report may not be reproduced or distributed in
part or in whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Aleo Security Assessment
PUBLIC

https://github.com/trailofbits/publications


Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6
Project Goals 8
Project Targets 9
Project Coverage 10
Automated Testing 11
Codebase Maturity Evaluation 14
Summary of Findings 16
Detailed Findings 19

1. Denial-of-service vectors in FromBytes implementations 19
2. Faulty validation enables more than the intended number of inputs on finalize
commands 21
3. Parsing differences between the aleo.abnf grammar and the implementation 23
4. Function, closure, and finalize deserialization routines allow large memory
allocations 29
5. Unvalidated destination type for commit instructions 32
6. Unnecessary overflow checks 33
7. Missing upper bound validation with MAX_STRUCT_ENTRIES 34
8. Discrepancy between the matches_record function implementation and its
documentation 35
9. The /testnet3/node/env API endpoint provides binary path and repository
information 36
10. Maximum peer message limit is off by one 38
11. The peers request/response flow allows for local IP with non-node port 39
12. The refresh_and_insert function may not return previously seen timestamp 42
13. Structure serialization does not declare the correct number of fields 44
14. Potential overflow in the total finalize cost 46
15. The is_sequential function allows u64::MAX to 0 transitions 47
16. Requests for more peers may not use newly connected peers 48
17. Committee::new allows genesis committees with more than four members to be
created 50

Trail of Bits 3 Aleo Security Assessment
PUBLIC



18. GitHub CI actions versions are not pinned 51
19. The committee sorting tests do not consider whether the validator is open to
staking 52
20. Impossible match case in authority verification routine 55
21. The BFT::is_linked function does not properly determine whether two certificates
are linked 56
22. Peer is not removed from connecting_peers when handshake times out 58
23. Rest API allows any origin 60
24. Garbage collection does not collect the next_gc_round 61
25. Fee verification is off by one 62
26. Potential block reward truncation and overflow 63
27. Saturated additions and subtractions can cause inconsistencies 65
28. IndexSet::remove does not preserve the order of the IndexSet 67
29. The batch certificate ID calculation does not include the number of signatures in
the preimage 68
30. Missing validations in block metadata and header validation functions 70
31. The order of the saturating_add and checked_sub operations is not documented
72

A. Vulnerability Categories 74
B. Code Maturity Categories 76
C. Code Quality Findings 78
D. Automated Analysis Tool Configuration 90
E. Proof of Concept for TOB-ALEO-12 95
F. Fix Review Results 97

Detailed Fix Review Results 100
G. Fix Review Status Categories 104

Trail of Bits 4 Aleo Security Assessment
PUBLIC



Project Summary

Contact Information
The following project manager was associated with this project:

Sam Greenup, Project Manager
sam.greenup@trailofbits.com

The following engineering director was associated with this project:

Jim Miller, Engineering Director, Cryptography
james.miller@trailofbits.com

The following consultants were associated with this project:

Filipe Casal, Consultant Opal Wright, Consultant
filipe.casal@trailofbits.com opal.wright@trailofbits.com

Dominik Czarnota, Consultant Joop van de Pol, Consultant
dominik.czarnota@trailofbits.com joop.vandepol@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

August 17, 2023 Pre-project kickoff call

August 28, 2023 Status update meeting #1

September 5, 2023 Status update meeting #2

September 11, 2023 Status update meeting #3

September 18, 2023 Status update meeting #4

September 25, 2023 Status update meeting #5

October 2, 2023 Status update meeting #6

October 10, 2023 Delivery of report draft and report readout meeting

November 28, 2023 Delivery of comprehensive report with fix review appendix

Trail of Bits 5 Aleo Security Assessment
PUBLIC



Executive Summary

Engagement Overview
Aleo Systems engaged Trail of Bits to review the security of components of snarkVM and
snarkOS. The review of snarkVM focused on the synthesizer and finalize construct logic
handling, while the review of snarkOS focused on inter-node communication and the
implementation of a DAG-based consensus protocol, Bullshark.

A team of four consultants conducted the review from August 21 to October 6, 2023, for a
total of 18 engineer-weeks of effort. Our testing efforts focused on ensuring the robustness
of interfaces handling unvalidated data and on finding discrepancies between
specifications and the implementation. With full access to the source code and
documentation, we performed static and dynamic testing of the codebase, using
automated and manual processes.

Observations and Impact
We found that the codebase is generally very robust to malicious or malformed data and
that it correctly validates the data structures that it handles. Except for the low-severity
finding TOB-ALEO-1, which could enable denial-of-service attacks due to missing data
validation when deserializing some data structures, all other data validation findings are of
informational severity.

Finding TOB-ALEO-21 should also be highlighted: we identified an important function in the
consensus algorithm that almost always returns false due to a typo in the implementation.
This reveals that there are some areas with limited test coverage, especially in more
recently developed parts of the code.

Finally, we found a medium-severity issue related to the use of unpinned GitHub actions
(TOB-ALEO-18).

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Aleo Systems take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Invest in broader test coverage. Identify areas of the codebase that would benefit
from additional testing, such as critical functions and areas with limited test
coverage. Use Necessist to identify potential issues with the tests.

Trail of Bits 6 Aleo Security Assessment
PUBLIC

https://github.com/trailofbits/necessist


● Address “TODO” comments in the code. Although they are useful for rapid
development, “TODO” comments allow flaws to remain in the codebase. Each
“TODO” comment should be tracked and triaged in a centralized issue tracker (e.g.,
GitHub issues), not in code comments, and should be fixed if needed.
Commented-out code should also be addressed.

● Integrate zeroization into data structures. Leaving sensitive data in memory after
use increases the risk of unauthorized disclosure through cold-boot attacks and of
deallocated memory being designated for other processes. Using a
memory-zeroization crate like zeroize can ensure that sensitive data is wiped after
being dropped.

The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 1

Low 4

Informational 23

Undetermined 3

CATEGORY BREAKDOWN

Category Count

Access Controls 1

Cryptography 1

Data Validation 24

Patching 1

Testing 3

Timing 1

Trail of Bits 7 Aleo Security Assessment
PUBLIC

https://crates.io/crates/zeroize


Project Goals

The engagement was scoped to provide a security assessment of Aleo Systems’ snarkVM
and snarkOS codebases. Specifically, we sought to answer the following non-exhaustive list
of questions:

● Does the codebase follow best practices for Rust?

● Does the Aleo Rust parser match the Aleo grammar specified in grammar.abnf?

● Does the Rust implementation match the “Aleo Protocol Specification”?

● Are the Aleo parser and structure deserializers robust to malicious or malformed
data?

● Are the next block and transaction validation functions properly implemented?

● Is the Bullshark implementation sound?

● Are the REST API endpoints robust to malicious or malformed data?

● Is inter-node communication robust to malicious participants?

Trail of Bits 8 Aleo Security Assessment
PUBLIC



Project Targets

The engagement involved a review and testing of the following targets.

snarkVM
Repository https://github.com/AleoHQ/snarkVM/tree/testnet3-audit-tob

Version 9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f

Type Rust

Platform Multiple

snarkOS
Repository https://github.com/AleoHQ/snarkOS

Version dc0c10b035069c6d93024092a7ead1540e6d75ed

Type Rust

Platform Multiple

snarkOS/narwhal
Repository https://github.com/AleoHQ/snarkOS/tree/narwhal

Version bac55af25189575c35ef3e2cc2d0777c1f6e5be7

Type Rust

Platform Multiple

snarkOS/narwhal, final iteration
Repository https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-tob

Version 63292c18b04ddb2bbf0b324224ce234ca6c9d898

Type Rust

Platform Multiple

Trail of Bits 9 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/tree/testnet3-audit-tob
https://github.com/AleoHQ/snarkOS/tree/dc0c10b035069c6d93024092a7ead1540e6d75ed
https://github.com/AleoHQ/snarkOS/tree/bac55af25189575c35ef3e2cc2d0777c1f6e5be7
https://github.com/AleoHQ/snarkOS/tree/testnet3-audit-tob


Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● snarkVM: We manually reviewed the synthesizer and ledger subfolders of snarkVM,
focusing on alignment with the “Aleo Protocol Specification,” alignment with the
formal Aleo grammar, data serialization and deserialization, and transaction and
block verification functions.

● snarkOS: We manually reviewed the snarkos-node crate, focusing on the
Bullshark implementation, inter-node communication, and resistance to denial of
service.

● We used static analysis tools in the snarkVM and snarkOS codebases to identify
areas of code with code quality issues and to obtain a test coverage report.
Additionally, we used Semgrep and Dylint to find and confirm variants of manually
found API misuses.

Trail of Bits 10 Aleo Security Assessment
PUBLIC



Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Semgrep An open-source static analysis tool for finding bugs and
enforcing code standards when editing or committing
code and during build time

Appendix D.1

Dylint A tool for running Rust lints from dynamic libraries Appendix D.2

Necessist A tool for finding bugs in tests Appendix D.3

cargo-llvm-
cov

A tool for generating test coverage reports in Rust Appendix D.4

cargo-edit A tool for quickly identifying outdated crates Appendix D.5

Clippy An open-source Rust linter used to catch common
mistakes and unidiomatic Rust code

Appendix D.6

cargo-audit An open-source tool for checking dependencies against
the RustSec advisory database

Appendix D.7

Areas of Focus
Our automated testing and verification work focused on the following:

● General code quality issues and unidiomatic code patterns

● Untested code regions with coverage reports

● Variants of manually found vulnerable API patterns

Trail of Bits 11 Aleo Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep
https://github.com/trailofbits/dylint
https://github.com/trailofbits/necessist
https://github.com/taiki-e/cargo-llvm-cov
https://github.com/taiki-e/cargo-llvm-cov
https://github.com/killercup/cargo-edit
https://doc.rust-lang.org/clippy/
https://crates.io/crates/cargo-audit


Test Results
The results of this focused testing are detailed below.

Clippy
snarkVM: Running Clippy in pedantic mode in the snarkVM codebase reveals several
unidiomatic code patterns, from which we highlight the following: explicit_iter_loop,
inconsistent_struct_constructor, manual_let_else, map_unwrap_or,
needless_pass_by_value, and uninlined_format_args.

We recommend routinely (e.g., every minor release) running Clippy in pedantic mode. If
certain patterns are commonly found, consider adding these rules to the default CI Clippy
runs.

cargo-audit
Running cargo-audit in both the snarkVM and snarkOS codebases reveals unmaintained
dependencies: encoding, ansi_term, and tui.

Semgrep
Appendix D includes the rules written during the engagement to find variants of manually
found issues. These rules should be included in CI to ensure that the same issues are not
included in the codebase in the future.

Dylint
Dylint found code quality issues in both the snarkOS and snarkVM codebases:
commented_code, unnecessary_conversion_for_trait, unnamed_constant,
non_local_effect_before_error_return, and hidden_glob_reexports. We
recommend investigating these findings and integrating Dylint into the developer's
workflow or CI.

cargo-edit
The cargo-edit tool allows users to quickly identify outdated crates. Both the snarkVM
and snarkOS codebases had outdated crates (minor or patch versions) at the time of the
audit: rust-gpu-tools, proptest, curl, anyhow, clap, rand_chacha, tokio, nix,
pea2pea, bincode, once_cell, and futures.

cargo-llvm-cov
We obtained test coverage for the snarkos-node crate while investigating finding
TOB-ALEO-21, and the results show deficiencies in test coverage.

Trail of Bits 12 Aleo Security Assessment
PUBLIC



Trail of Bits 13 Aleo Security Assessment
PUBLIC



Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The codebase generally uses checked and saturating
arithmetic operations, making overflows impossible.

Strong

Authentication /
Access Controls

We found a low-severity issue related to access controls:
the server for a node’s REST API is spawned with
Cross-Origin Resource Sharing (CORS) settings that allow
any origin (TOB-ALEO-23).

Satisfactory

Complexity
Management

The codebase is well structured and well organized into
folders and crates.

Satisfactory

Cryptography
and Key
Management

We found no issues in the use of the Noise protocol,
which correctly increments nonces.

Satisfactory

Data Handling Generally, we found that the codebase correctly handles
malicious or malformed data (e.g., when dealing with
data deserialization or communication between actors).
However, we found several instances of the same pattern
described in finding TOB-ALEO-1 that allocates memory
based on serialized data that could cause the handling
program to panic.

Satisfactory

Documentation The codebase is well documented, and a specification for
the Aleo protocol was provided. Additionally, we
recommend specifying the variant of the consensus
protocol that is currently implemented.

Satisfactory

Memory Safety
and Error
Handling

Unsafe code is not used in the codebase, and the code
actively denies and forbids unsafe code with the
unsafe_code Rust lint. Errors are correctly propagated,

Satisfactory

Trail of Bits 14 Aleo Security Assessment
PUBLIC



and most uses of unwrap operations have code
comments explaining why they are safe.

Testing and
Verification

The codebase is generally well tested. However, newly
developed areas such as snarkos-node have limited
test coverage. We identified an incorrect function
implementation that is not covered by tests
(TOB-ALEO-21). Critical functions in the bft.rs file
should be well tested. Other complex functions such as
construct_call_graph in snarkVM should also be
tested.

Moderate

Trail of Bits 15 Aleo Security Assessment
PUBLIC



Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Denial-of-service vectors in FromBytes
implementations

Data Validation Low

2 Faulty validation enables more than the intended
number of inputs on finalize commands

Data Validation Informational

3 Parsing differences between the aleo.abnf
grammar and the implementation

Data Validation Informational

4 Function, closure, and finalize deserialization
routines allow large memory allocations

Data Validation Informational

5 Unvalidated destination type for commit
instructions

Data Validation Informational

6 Unnecessary overflow checks Data Validation Informational

7 Missing upper bound validation with
MAX_STRUCT_ENTRIES

Data Validation Informational

8 Discrepancy between the matches_record
function implementation and its documentation

Data Validation Informational

9 The /testnet3/node/env API endpoint provides
binary path and repository information

Data Validation Informational

10 Maximum peer message limit is off by one Data Validation Informational

11 The peers request/response flow allows for local
IP with non-node port

Data Validation Low

Trail of Bits 16 Aleo Security Assessment
PUBLIC



12 The refresh_and_insert function may not return
previously seen timestamp

Data Validation Low

13 Structure serialization does not declare the
correct number of fields

Data Validation Informational

14 Potential overflow in the total finalize cost Data Validation Informational

15 The is_sequential function allows u64::MAX to 0
transitions

Data Validation Informational

16 Requests for more peers may not use newly
connected peers

Timing Informational

17 Committee::new allows genesis committees with
more than four members to be created

Data Validation Informational

18 GitHub CI actions versions are not pinned Patching Medium

19 The committee sorting tests do not consider
whether the validator is open to staking

Data Validation Informational

20 Impossible match case in authority verification
routine

Data Validation Undetermined

21 The BFT::is_linked function does not properly
determine whether two certificates are linked

Testing Undetermined

22 Peer is not removed from connecting_peers when
handshake times out

Data Validation Undetermined

23 Rest API allows any origin Access Controls Low

24 Garbage collection does not collect the
next_gc_round

Testing Informational

25 Fee verification is off by one Data Validation Informational

Trail of Bits 17 Aleo Security Assessment
PUBLIC



26 Potential block reward truncation and overflow Data Validation Informational

27 Saturated additions and subtractions can cause
inconsistencies

Data Validation Informational

28 IndexSet::remove does not preserve the order of
the IndexSet

Testing Informational

29 The batch certificate ID calculation does not
include the number of signatures in the preimage

Cryptography Informational

30 Missing validations in block metadata and header
validation functions

Data Validation Informational

31 The order of the saturating_add and checked_sub
operations is not documented

Data Validation Informational

Trail of Bits 18 Aleo Security Assessment
PUBLIC



Detailed Findings

1. Denial-of-service vectors in FromBytes implementations

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-ALEO-1

Target: ledger/block/src/bytes.rs, utilities/src/bytes.rs,
sonic_pc/data_structures.rs, ledger/narwhal/{batch-certificate,
subdag, batch-header}/src/bytes.rs, ledger/committee/src/bytes.rs,
node/sync/locators/src/block_locators.rs,
node/narwhal/src/event/worker_ping.rs

Description
We identified several implementations of the FromBytes::read_le function that use an
unvalidated number of elements to allocate a vector with the Vec::with_capacity
function. This function panics when the provided capacity exceeds isize::MAX, allowing
an attacker to crash the application if the binary architecture is 32 bits.

// Read the ratifications.
let num_ratifications = u32::read_le(&mut reader)?;
let mut ratifications = Vec::with_capacity(num_ratifications as usize);

Figure 1.1: ledger/block/src/bytes.rs#41–43

Figure 1.1 shows an instance of this finding, in which a u32 element is read and
immediately used to allocate the vector. For a u32 element to be larger than isize::MAX,
the binary architecture must be 32 bits, such as wasm32, an architecture targeted by Aleo.
Therein, u32::MAX is larger than isize::MAX (which equals i32::MAX).

We identified the following locations that use this (or a similar) pattern:

● ledger/block/src/bytes.rs#41–43

● utilities/src/bytes.rs#L146-L147

● sonic_pc/data_structures.rs#L67-L68, L78-L79, L88-L89, L99-L100,
L120-L121, and L139-L140

● ledger/narwhal/batch-certificate/src/bytes.rs#L32-L34,
ledger/narwhal/subdag/src/bytes.rs#L35-L37,

Trail of Bits 19 Aleo Security Assessment
PUBLIC

https://doc.rust-lang.org/std/vec/struct.Vec.html#panics
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/bytes.rs#L41-L43
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/bytes.rs#L41-L43
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/utilities/src/bytes.rs#L146-L147
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/algorithms/src/polycommit/sonic_pc/data_structures.rs#L67-L68
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/algorithms/src/polycommit/sonic_pc/data_structures.rs#L78-L79
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/algorithms/src/polycommit/sonic_pc/data_structures.rs#L88-L89
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/algorithms/src/polycommit/sonic_pc/data_structures.rs#L99-L100
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/algorithms/src/polycommit/sonic_pc/data_structures.rs#L120-L121
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/algorithms/src/polycommit/sonic_pc/data_structures.rs#L139-L140
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-certificate/src/bytes.rs#L32-L34
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/subdag/src/bytes.rs#L35-L37


ledger/narwhal/batch-header/src/bytes.rs#L46-L48,
ledger/committee/src/bytes.rs#L30-L30

● num_certificates and num_rounds in
ledger/narwhal/subdag/src/bytes.rs#L27-L44

● ledger/narwhal/data/src/lib.rs#L100-L117,
ledger/narwhal/batch-header/src/bytes.rs#L36-L43,
ledger/coinbase/src/helpers/coinbase_solution/bytes.rs#L17-L22,
curves/src/templates/bls12/g2.rs#L65-L68,
ledger/block/src/transactions/bytes.rs#L27-L32

● node/sync/locators/src/block_locators.rs#L253-L255 and L263-L265,
node/narwhal/src/event/worker_ping.rs#L54-L64

Appendix C includes a Semgrep rule used to identify four variants of the issue in the
snarkVM codebase and three in the snarkOS codebase.

Exploit Scenario
An attacker provides a serialized data structure with a value larger than i32::MAX.
Deserialization of these bytes in wasm32 machines causes a panic and the system to halt.

Recommendations
Short term, add code to validate all values that could be attacker-controlled and that
determine allocation size within the application. Include the Semgrep rule provided in
appendix C in the CI/CD pipeline to prevent code with the same issue from being deployed
in the future.

Long term, add fuzz testing that supports all targeted architectures to the deserialization
routines.

Trail of Bits 20 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-header/src/bytes.rs#L46-L48
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/committee/src/bytes.rs#L30-L30
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/subdag/src/bytes.rs#L27-L44
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/data/src/lib.rs#L100-L117
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-header/src/bytes.rs#L36-L43
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/coinbase/src/helpers/coinbase_solution/bytes.rs#L17-L22
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/curves/src/templates/bls12/g2.rs#L65-L68
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/transactions/bytes.rs#L27-L32
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/sync/locators/src/block_locators.rs#L253-L255
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/sync/locators/src/block_locators.rs#L263-L265
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/event/worker_ping.rs#L54-L64


2. Faulty validation enables more than the intended number of inputs on
finalize commands

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-2

Target: synthesizer/program/src/{finalize/mod.rs, closure/mod.rs}

Description
The add_input functions for the FinalizeCore and ClosureCore structures allow one
element to be inserted above the N::MAX_INPUTS value due to an off-by-one error in the
inequality. The inequality should check whether the current number of inputs is less than
N::MAX_INPUTS, but in the current implementation, the validation allows finalize and
closure statements with N::MAX_INPUTS + 1 elements.

#[inline]
fn add_input(&mut self, input: Input<N>) -> Result<()> {

// Ensure there are no commands in memory.
ensure!(self.commands.is_empty(), "Cannot add inputs after commands have been

added");

// Ensure the maximum number of inputs has not been exceeded.
ensure!(self.inputs.len() <= N::MAX_INPUTS, "Cannot add more than {} inputs",

N::MAX_INPUTS);

Figure 2.1: synthesizer/program/src/finalize/mod.rs#89–95

#[inline]
fn add_input(&mut self, input: Input<N>) -> Result<()> {

// Ensure there are no instructions or output statements in memory.
ensure!(self.instructions.is_empty(), "Cannot add inputs after instructions have

been added");
ensure!(self.outputs.is_empty(), "Cannot add inputs after outputs have been

added");

// Ensure the maximum number of inputs has not been exceeded.
ensure!(self.inputs.len() <= N::MAX_INPUTS, "Cannot add more than {} inputs",

N::MAX_INPUTS);

Figure 2.2: synthesizer/program/src/closure/mod.rs#79–86

Recommendations
Short term, modify the checks to validate the maximum number of allowed inputs to
prevent the off-by-one error.

Trail of Bits 21 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/finalize/mod.rs#L89-L95
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/closure/mod.rs#L79-L86


Long term, add positive and negative tests for these invariants: tests that fail because they
have one too many inputs, and tests that pass because they have exactly the allowed
number of inputs.

Trail of Bits 22 Aleo Security Assessment
PUBLIC



3. Parsing differences between the aleo.abnf grammar and the
implementation

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-3

Target: Several files

Description
We have identified several differences between the formal grammar in the aleo.abnf file
and the Rust implementation.

Missing finalize-output tokens: The grammar allows zero or more finalize-output
tokens in the finalize statement, but the finalize implementation has no output
statements.

finalize = cws %s"finalize" ws identifier ws ":"
*finalize-input
1*command
*finalize-output

Figure 3.1: aleo.abnf#452–455

// Parse the inputs from the string.
let (string, inputs) = many0(Input::parse)(string)?;
// Parse the commands from the string.
let (string, commands) = many1(Command::parse)(string)?;

map_res(take(0usize), move |_| {
// Initialize a new finalize.
let mut finalize = Self::new(name);
if let Err(error) = inputs.iter().cloned().try_for_each(|input|

finalize.add_input(input)) {
eprintln!("{error}");
return Err(error);

}
if let Err(error) = commands.iter().cloned().try_for_each(|command|

finalize.add_command(command)) {
eprintln!("{error}");
return Err(error);

}
Ok::<_, Error>(finalize)

})(string)

Figure 3.2: synthesizer/program/src/finalize/parse.rs#34–51

Trail of Bits 23 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L452-L455
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/finalize/parse.rs#L34-L51


Missing validation of number of command tokens: The FromBytes implementation for
finalize does not validate that there is at least one command:

// Read the commands.
let num_commands = u16::read_le(&mut reader)?;
if num_commands > u16::try_from(N::MAX_COMMANDS).map_err(|e| error(e.to_string()))?
{

return Err(error(format!("Failed to deserialize finalize: too many commands
({num_commands})")));
}
let mut commands = Vec::with_capacity(num_commands as usize);
for _ in 0..num_commands {

commands.push(Command::read_le(&mut reader)?);
}

Figure 3.3: synthesizer/program/src/finalize/bytes.rs#31–39

Unimplemented finalize-type for inputs: The grammar allows two extra
finalize-types that are not taken into account in the implementation:

finalize-input = cws %s"input" ws register
ws %s"as" ws finalize-type ws ";"

Figure 3.4: aleo.abnf#457–458

finalize-type = plaintext-type %s".public"
/ identifier %s".record"
/ locator %s".record"

Figure 3.5: aleo.abnf#254–256

// Parse the plaintext type from the string.
let (string, (plaintext_type, _)) = pair(PlaintextType::parse,
tag(".public"))(string)?;

Figure 3.6: synthesizer/program/src/finalize/input/parse.rs#45–46

Unimplemented finalize-type for mapping key and value: The grammar uses the
same finalize-type for the mapping key and value:

mapping-key = cws %s"key" ws identifier ws %s"as" ws finalize-type ws ";"

mapping-value = cws %s"value" ws identifier ws %s"as" ws finalize-type ws ";"

Figure 3.7: aleo.abnf#274–276

However, the implementation considers only the .public type.

// Parse the plaintext type from the string.
let (string, (plaintext_type, _)) = pair(PlaintextType::parse,

Trail of Bits 24 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/finalize/bytes.rs#L31-L39
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L457-L458
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L254-L256
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/finalize/input/parse.rs#L45-L46
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L274-L276


tag(".public"))(string)?;

Figure 3.8: synthesizer/program/src/mapping/key/parse.rs#35–36

// Parse the plaintext type from the string.
let (string, (plaintext_type, _)) = pair(PlaintextType::parse,
tag(".public"))(string)?;

Figure 3.9: synthesizer/program/src/mapping/value/parse.rs#35–36

Empty inputs on closures: The closure grammar does not enforce non-empty inputs:

closure = cws %s"closure" ws identifier ws ":"
*closure-input
1*instruction
*closure-output

Figure 3.10: aleo.abnf#427–430

However, the implementation does:

// Ensure there are input statements in the closure.
ensure!(!closure.inputs().is_empty(), "Cannot evaluate a closure without input
statements");

Figure 3.11: synthesizer/program/src/lib.rs#254–255

Missing keyword on branches: The branch grammar is missing the “to” keyword:

branch = cws branch-op ws operand ws operand ws label ws ";"

Figure 3.12: aleo.abnf#411

impl<N: Network, const VARIANT: u8> Parser for Branch<N, VARIANT> {
/// Parses a string into an command.
#[inline]
fn parse(string: &str) -> ParserResult<Self> {

// Parse the whitespace and comments from the string.
let (string, _) = Sanitizer::parse(string)?;
// Parse the opcode from the string.
let (string, _) = tag(*Self::opcode())(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;

// Parse the first operand from the string.
let (string, first) = Operand::parse(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;

// Parse the second operand from the string.
let (string, second) = Operand::parse(string)?;

Trail of Bits 25 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/mapping/key/parse.rs#L35-L36
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/mapping/value/parse.rs#L35-L36
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L427-L430
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/lib.rs#L254-L255
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L411-L411


// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;

// Parse the "to" from the string.
let (string, _) = tag("to")(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the position from the string.
let (string, position) = Identifier::parse(string)?;

// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the ";" from the string.
let (string, _) = tag(";")(string)?;

Ok((string, Self { first, second, position }))
}

}

Figure 3.13: synthesizer/program/src/logic/command/branch.rs#69–104

Missing whitespace token on rand_chacha: The rand_chacha grammar is missing a
whitespace token between the “as” token and the literal-type token:

random = cws %s"rand.chacha"
*2( ws operand )
ws %s"into" ws register
ws %s"as" literal-type ws ";"

Figure 3.14: aleo.abnf#400–403

let (string, _) = tag("as")(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the destination register type from the string.
let (string, destination_type) = LiteralType::parse(string)?;

Figure 3.15: synthesizer/program/src/logic/command/rand_chacha.rs#169–173

Optional destinations on call: The call implementation allows optional destinations,
but the grammar enforces that there must be at least one:

call = %s"call" ws ( locator / identifier ) ws *( ws operand )
ws %s"into" ws 1*( ws register )

Figure 3.16: aleo.abnf#365–366

// Optionally parse the "into" from the string.
let (string, destinations) = match opt(tag("into"))(string)? {

// If the "into" was not parsed, return the string and an empty vector of
destinations.

Trail of Bits 26 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/command/branch.rs#L69-L104
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L400-L403
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/command/rand_chacha.rs#L169-L173
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L365-L366


(string, None) => (string, vec![]),
// If the "into" was parsed, parse the destinations from the string.
(string, Some(_)) => {

// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the destinations from the string.
let (string, destinations) =

map_res(many0(complete(parse_destination)), |destinations:
Vec<Register<N>>| {

// Ensure the number of destinations is within the bounds.
match destinations.len() <= N::MAX_OPERANDS {

true => Ok(destinations),
false => Err(error("Failed to parse 'call' opcode: too many

destinations")),
}

})(string)?;
// Return the string and the destinations.
(string, destinations)

}
};

Figure 3.17:
synthesizer/program/src/logic/instruction/operation/call.rs#306–326

Grammar missing sign.verify instruction: The sign.verify instruction is missing
from the grammar.

Opcode::Sign => &"sign.verify",

Figure 3.18: synthesizer/program/src/logic/instruction/opcode/mod.rs#57

Discrepancy in operand number on hash: The hash grammar enforces exactly one
operand, but the implementation allows for two:

hash = hash-op ws operand
ws %s"into" ws register
ws %s"as" ws ( arithmetic-type / address-type )

Figure 3.19: aleo.abnf#358–360

/// Returns the expected number of operands given the variant.
const fn expected_num_operands(variant: u8) -> usize {

match variant {
9..=11 => 2,
_ => 1,

}
}

Figure 3.20:
synthesizer/program/src/logic/instruction/operation/hash.rs#68–74

Trail of Bits 27 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/call.rs#L306-L326
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/call.rs#L306-L326
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/opcode/mod.rs#L57-L57
https://github.com/AleoHQ/grammars/blob/18026e607650d9266d4c785d1e6c1cb85ab245b2/aleo.abnf#L358-L360
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/hash.rs#L68-L74
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/hash.rs#L68-L74


// Parse the operands from the string.
let (string, operands) = parse_operands(string, expected_num_operands(VARIANT))?;

Figure 3.21:
synthesizer/program/src/logic/instruction/operation/hash.rs#315–316

Missing whitespace separation between operand parsing: The operand parser for hash
instructions does not separate each operand with a whitespace.

fn parse_operands<N: Network>(string: &str, num_operands: usize) ->
ParserResult<Vec<Operand<N>>> {

let mut operands = Vec::with_capacity(num_operands);
let mut string = string;

for _ in 0..num_operands {
// Parse the operand from the string.
let (next_string, operand) = Operand::parse(string)?;
// Update the string.
string = next_string;
// Push the operand.
operands.push(operand);

}

Ok((string, operands))
}

Figure 3.22:
synthesizer/program/src/logic/instruction/operation/hash.rs#295–309

Recommendations
Short term, resolve all of the differences between the grammar and the implementation.

Long term, add tests for all of the cases identified in the finding; add tests for all optional or
variable repetition in the grammar.

Trail of Bits 28 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/hash.rs#L315-L316
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/hash.rs#L315-L316
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/hash.rs#L295-L309
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/hash.rs#L295-L309


4. Function, closure, and finalize deserialization routines allow large memory
allocations

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-4

Target: synthesizer/program/src/{function, closure, finalize}/bytes.rs

Description
The function, closure, and finalize deserialization routines do not validate the number of
input and output objects described in the serialized data. The validation occurs only in the
later calls to the add_input and add_output functions, allowing an attacker to use
enough memory for 216-1 input and 216-1 output objects. This limit is much larger than the
limit of 16 objects imposed in the add_input and add_output functions.

/// Reads the function from a buffer.
#[inline]
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {

// Read the function name.
let name = Identifier::<N>::read_le(&mut reader)?;

// Read the inputs.
let num_inputs = u16::read_le(&mut reader)?;
let mut inputs = Vec::with_capacity(num_inputs as usize);
for _ in 0..num_inputs {

inputs.push(Input::read_le(&mut reader)?);
}

// Read the instructions.
let num_instructions = u32::read_le(&mut reader)?;
if num_instructions > u32::try_from(N::MAX_INSTRUCTIONS).map_err(|e|

error(e.to_string()))? {
return Err(error(format!("Failed to deserialize a function: too many

instructions ({num_instructions})")));
}
let mut instructions = Vec::with_capacity(num_instructions as usize);
for _ in 0..num_instructions {

instructions.push(Instruction::read_le(&mut reader)?);
}

// Read the outputs.
let num_outputs = u16::read_le(&mut reader)?;
let mut outputs = Vec::with_capacity(num_outputs as usize);
for _ in 0..num_outputs {

outputs.push(Output::read_le(&mut reader)?);

Trail of Bits 29 Aleo Security Assessment
PUBLIC



}

Figure 4.1: synthesizer/program/src/function/bytes.rs#20–48

A similar pattern is present in both the ClosureCore::read_le and
FinalizeCore:read_le functions:

impl<N: Network, Instruction: InstructionTrait<N>> FromBytes for ClosureCore<N,
Instruction> {

/// Reads the closure from a buffer.
#[inline]
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {

// Read the closure name.
let name = Identifier::<N>::read_le(&mut reader)?;

// Read the inputs.
let num_inputs = u16::read_le(&mut reader)?;
let mut inputs = Vec::with_capacity(num_inputs as usize);
for _ in 0..num_inputs {

inputs.push(Input::read_le(&mut reader)?);
}

// Read the instructions.
let num_instructions = u32::read_le(&mut reader)?;
if num_instructions > u32::try_from(N::MAX_INSTRUCTIONS).map_err(|e|

error(e.to_string()))? {
return Err(error(format!("Failed to deserialize a closure: too many

instructions ({num_instructions})")));
}
let mut instructions = Vec::with_capacity(num_instructions as usize);
for _ in 0..num_instructions {

instructions.push(Instruction::read_le(&mut reader)?);
}

// Read the outputs.
let num_outputs = u16::read_le(&mut reader)?;
let mut outputs = Vec::with_capacity(num_outputs as usize);
for _ in 0..num_outputs {

outputs.push(Output::read_le(&mut reader)?);
}

Figure 4.2: synthesizer/program/src/closure/bytes.rs#17–46

impl<N: Network, Command: CommandTrait<N>> FromBytes for FinalizeCore<N, Command> {
/// Reads the finalize from a buffer.
#[inline]
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {

// Read the associated function name.
let name = Identifier::<N>::read_le(&mut reader)?;

// Read the inputs.
let num_inputs = u16::read_le(&mut reader)?;

Trail of Bits 30 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/function/bytes.rs#L20-L48
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/closure/bytes.rs#L17-L46


let mut inputs = Vec::with_capacity(num_inputs as usize);
for _ in 0..num_inputs {

inputs.push(Input::read_le(&mut reader)?);
}

Figure 4.3: synthesizer/program/src/finalize/bytes.rs#17–29

Recommendations
Short term, add validation to the {FunctionCore, FinalizeCore,
ClosureCore}::read_le functions to prevent them from allocating unnecessarily large
input and output objects.

Long term, add fuzz testing to all deserialization routines.

Trail of Bits 31 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/finalize/bytes.rs#L17-L29


5. Unvalidated destination type for commit instructions

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-5

Target: synthesizer/program/src/logic/instruction/operation/commit.rs

Description
The destination type of a commit command must be set to address, field, or group.
However, the constructor fails to include such validation. Also, the deserialization and
serialization routines do not validate the destination type, allowing bytes to be serialized to
a CommitInstruction with an invalid destination type.

impl<N: Network, const VARIANT: u8> CommitInstruction<N, VARIANT> {
/// Initializes a new `commit` instruction.
#[inline]
pub fn new(operands: Vec<Operand<N>>, destination: Register<N>,

destination_type: LiteralType) -> Result<Self> {
// Sanity check that the operands is exactly two inputs.
ensure!(operands.len() == 2, "Commit instructions must have two operands");
// Return the instruction.
Ok(Self { operands, destination, destination_type })

}

Figure 5.1:
synthesizer/program/src/logic/instruction/operation/commit.rs#64–72

This finding is of informational severity because all of the functions implemented for this
instruction (evaluate, execute, and finalize) have checks that validate the destination
type.

Recommendations
Short term, add a check that validates the destination type in the CommitInstruction
constructor and the serialization and deserialization functions.

Trail of Bits 32 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/commit.rs#L64-L72
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/commit.rs#L64-L72


6. Unnecessary overflow checks

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-6

Target: synthesizer/program/src/logic/instruction/operation/mod.rs

Description
There are unnecessary overflow checks for the unsigned division and unsigned remainder
operations because these operations error out only when the second argument is zero.

(U8, U8) => U8 ("ensure overflows halt", "ensure divide by zero halts"),
(U16, U16) => U16 ("ensure overflows halt", "ensure divide by zero halts"),
(U32, U32) => U32 ("ensure overflows halt", "ensure divide by zero halts"),
(U64, U64) => U64 ("ensure overflows halt", "ensure divide by zero halts"),
(U128, U128) => U128 ("ensure overflows halt", "ensure divide by zero halts"),

Figure 6.1:
synthesizer/program/src/logic/instruction/operation/mod.rs#499–503

(U8, U8) => U8 ("ensure overflows halt", "ensure divide by zero halts"),
(U16, U16) => U16 ("ensure overflows halt", "ensure divide by zero halts"),
(U32, U32) => U32 ("ensure overflows halt", "ensure divide by zero halts"),
(U64, U64) => U64 ("ensure overflows halt", "ensure divide by zero halts"),
(U128, U128) => U128 ("ensure overflows halt", "ensure divide by zero halts"),

Figure 6.2:
synthesizer/program/src/logic/instruction/operation/mod.rs#158–162

Recommendations
Short term, remove the unnecessary overflow checks for the unsigned division and
remainder operations.

Trail of Bits 33 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/mod.rs#L499-L503
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/mod.rs#L499-L503
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/mod.rs#L158-L162
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/mod.rs#L158-L162


7. Missing upper bound validation with MAX_STRUCT_ENTRIES

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-7

Target: synthesizer/program/src/logic/instruction/operation/cast.rs

Description
When casting a series of values to a struct, the code validates that there are at least
MIN_STRUCT_ENTRIES values before fetching the structure. For completeness, the code
should also ensure that the number of values is at most MAX_STRUCT_ENTRIES.

fn cast_to_struct(
&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
registers: &mut impl RegistersStore<N>,
struct_name: Identifier<N>,
inputs: Vec<Value<N>>,

) -> Result<()> {
// Ensure the operands length is at least the minimum.
if inputs.len() < N::MIN_STRUCT_ENTRIES {

bail!("Casting to a struct requires at least {} operand",
N::MIN_STRUCT_ENTRIES)

}

// Retrieve the struct and ensure it is defined in the program.
let struct_ = stack.program().get_struct(&struct_name)?;

Figure 7.1:
synthesizer/program/src/logic/instruction/operation/cast.rs#661–674

Recommendations
Short term, add a check that validates that the number of values to be cast to a structure is
at most MAX_STRUCT_ENTRIES.

Trail of Bits 34 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/cast.rs#L661-L674
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/cast.rs#L661-L674


8. Discrepancy between the matches_record function implementation and its
documentation

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-8

Target: synthesizer/process/src/stack/register_types/matches.rs

Description
The matches_record function documentation states that, besides the owner field, the
remaining record fields could be out of order. However, the function implementation relies
on the same iterator order of each entry to ensure that the record matches the record
layout.

/// Checks that the given record matches the layout of the record type.
/// Note: Ordering for `owner` **does** matter, however ordering
/// for record data does **not** matter, as long as all defined members are present.
pub fn matches_record(

&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
operands: &[Operand<N>],
record_type: &RecordType<N>,

) -> Result<()> {

Figure 8.1: synthesizer/process/src/stack/register_types/matches.rs#100–108

// Ensure the operand types match the record entry types.
for (operand, (entry_name, entry_type)) in

operands.iter().skip(N::MIN_RECORD_ENTRIES).zip_eq(record_type.entries())

Figure 8.2: synthesizer/process/src/stack/register_types/matches.rs#159–161

Recommendations
Short term, determine whether the documentation needs to be updated or whether the
implementation needs to consider out-of-order record data.

Long term, add both positive and negative tests for this function.

Trail of Bits 35 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/process/src/stack/register_types/matches.rs#L100-L108
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/process/src/stack/register_types/matches.rs#L159-L161


9. The /testnet3/node/env API endpoint provides binary path and repository
information

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-9

Target: snarkos/node/env/src/lib.rs

Description
The /testnet3/node/env REST API endpoint leaks certain information about the system
that the node is running on, such as the path to the snarkOS binary, Git repository branch
name, or commit ID. Figure 9.1 shows an example of information that could be leaked.

Depending on how the user deployed and ran the node and what else is running on the
same system, the leaked information may be useful for an attacker to further exploit the
machine.

Also, the endpoint returns command line arguments that could contain sensitive
information such as private keys. The node mitigates the exposure of private keys by
omitting any arguments that start with the APrivateKey prefix in the EnvInfo.register
function. However, if a new sensitive argument were added to the command line
arguments, there is a chance the node may not omit it.

$ curl -vvv vm.aleo.org/api/testnet3/node/env
...
{
"package": "",
"host": "",
"rustc": "",
"args": [
"/root/.cargo/bin/snarkos",
"start",
"--nodisplay",
"--cdn",
"",
"--connect",

"24.199.74.2:4133,167.172.14.86:4133,159.203.146.71:4133,188.166.201.188:4133,161.35
.247.23:4133,144.126.245.162:4133,138.68.126.82:4133,159.89.211.64:4133,170.64.252.5
8:4133,143.244.211.239:4133",

"--rest",
"0.0.0.0:12345",
"--logfile",
"/dev/null",

Trail of Bits 36 Aleo Security Assessment
PUBLIC



"--verbosity",
"4",
"--beacon"

],
"repo": "",
"branch": "",
"commit": ""

}

Figure 9.1: An example request to the /testnet3/node/env API endpoint

Recommendations
Short term, remove the binary path and Git repository information from the
/testnet3/node/env API endpoint to prevent the node from leaking information that
users may not want to publish.

Trail of Bits 37 Aleo Security Assessment
PUBLIC



10. Maximum peer message limit is off by one

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-10

Target: snarkos/node/router/src/inbound.rs

Description
The Inbound::inbound function contains a comment stating that it drops a peer if they
sent more than 1,000 messages in the last 5 seconds. However, in practice, due to the
num_messages >= 1000 check (figure 10.1), it actually allows for only 999 messages.

/// Handles the inbound message from the peer.
async fn inbound(&self, peer_addr: SocketAddr, message: Message<N>) -> Result<()> {

// (...)
// Drop the peer, if they have sent more than 1000 messages in the last 5

seconds.
let num_messages = self.router().cache.insert_inbound_message(peer_ip, 5);
if num_messages >= 1000 {

bail!("Dropping '{peer_ip}' for spamming messages (num_messages =
{num_messages})")

}

Figure 10.1: node/router/src/inbound.rs#L45-L57

Recommendations
Short term, change the >= comparison to > in the Inbound::inbound function. Also,
declare constants for the maximum number of messages value (1000) and for the time
interval to be checked (5 seconds).

Trail of Bits 38 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/inbound.rs#L45-L57


11. The peers request/response flow allows for local IP with non-node port

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-ALEO-11

Target: snarkos/node/router/src/inbound.rs

Description
The PeerResponse handler filters out the peers list sent by another node (figure 11.1). This
filtering is done through the is_bogon_address function (figure 11.2), which does not
filter out special addresses such as 0.0.0.0 or 255.255.255.255. While those addresses are
not valid destination addresses per RFC 1122, the 0.0.0.0 address is often treated as
localhost (figure 11.4). If a node returns such an IP address, the requesting peer will then
validate it once again through the is_local_ip function, called by the
check_connection_attempt function, before performing a connection. This validation
does not allow for a 0.0.0.0 IP address with a node port, but it does not prevent the
responding peer from using a different port (figure 11.3).

As a result, it is possible to bypass the peers address filtering, which should disallow an
address to a localhost server from being returned. This bypass would allow a malicious
node to cause another node to connect to its localhost address with a different port than a
node port (4130 by default).

/// Handles a `PeerResponse` message.
fn peer_response(&self, _peer_ip: SocketAddr, peers: &[SocketAddr]) -> bool {

// Filter out bogon addresses.
let peers = peers.iter().copied().filter(|addr|

!is_bogon_address(addr.ip())).collect::<Vec<_>>();
// Adds the given peer IPs to the list of candidate peers.
self.router().insert_candidate_peers(&peers);
true

}

Figure 11.1: snarkOS/node/router/src/inbound.rs#L309-L315

/// Checks if the given IP address is a bogon address.
///
/// A bogon address is an IP address that should not appear on the public Internet.
/// This includes private addresses, loopback addresses, and link-local addresses.
pub fn is_bogon_address(ip: IpAddr) -> bool {

match ip {
IpAddr::V4(ipv4) => ipv4.is_loopback() || ipv4.is_private() ||

ipv4.is_link_local(),

Trail of Bits 39 Aleo Security Assessment
PUBLIC

https://www.rfc-editor.org/rfc/rfc1122
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/inbound.rs#L309-L315


IpAddr::V6(ipv6) => ipv6.is_loopback(),
}

}

Figure 11.2: snarkOS/node/tcp/src/lib.rs#L36-L45

/// Ensure we are allowed to connect to the given peer.
fn check_connection_attempt(&self, peer_ip: SocketAddr) -> Result<()> {

// Ensure the peer IP is not this node.
if self.is_local_ip(&peer_ip) {

bail!("Dropping connection attempt to '{peer_ip}' (attempted to
self-connect)")

}
...

}

/// Returns `true` if the given IP is this node.
pub fn is_local_ip(&self, ip: &SocketAddr) -> bool {

*ip == self.local_ip()
|| (ip.ip().is_unspecified() || ip.ip().is_loopback()) && ip.port() ==

self.local_ip().port()
}

Figure 11.3: snarkOS/node/router/src/lib.rs#L159-L164 and #L201-L205

Exploit Scenario
An attacker sets up a malicious node that returns a 0.0.0.0:port address from a
PeerRequest response. They set a port so that the connecting node will connect to
another server it hosts (since, for example, its own node port would be filtered). The impact
of such behavior depends on the servers hosted on the node that requested more peers.

Figure 11.4: A screenshot showing that connecting to a 0.0.0.0 address actually connects to the
localhost

Trail of Bits 40 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/tcp/src/lib.rs#L36-L45
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/lib.rs#L159-L164
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/lib.rs#L201-L205


Recommendations
Short term, change the is_local_ip function to filter out unspecified and loopback IP
addresses no matter what their port is.

Long term, add tests against this behavior.

Trail of Bits 41 Aleo Security Assessment
PUBLIC



12. The refresh_and_insert function may not return previously seen
timestamp

Severity: Low Difficulty: High

Type: Data Validation Finding ID: TOB-ALEO-12

Target: snarkos/node/router/src/helpers/cache.rs

Description
The refresh_and_insert function (figure 12.1) should return the previously seen
timestamp if such a timestamp exists. However, it returns a different timestamp if the map
size is bigger than its capacity and the fetched key was the first inserted item.

Appendix D shows a minimal proof of concept of the problematic behavior of the
refresh_and_insert function.

Due to this behavior, checks for whether a given entry has been seen recently can be
bypassed. If the map exceeds its capacity, an entry that has been seen recently will be
removed from the map and will be treated as if it had not been seen. This occurs during the
handling of Message::UnconfirmedTransaction (figure 12.2) and
Message::UnconfirmedSolution messages.

/// Updates the map by enforcing the maximum cache size.
fn refresh<K: Eq + Hash, V>(map: &RwLock<LinkedHashMap<K, V>>) {

let mut map_write = map.write();
while map_write.len() >= MAX_CACHE_SIZE {

map_write.pop_front();
}

}

/// Updates the map by enforcing the maximum cache size, and inserts the given key.
/// Returns the previously seen timestamp if it existed.
fn refresh_and_insert<K: Eq + Hash>(

map: &RwLock<LinkedHashMap<K, OffsetDateTime>>,
key: K,

) -> Option<OffsetDateTime> {
Self::refresh(map);
map.write().insert(key, OffsetDateTime::now_utc())

}

Figure 12.1: snarkOS/node/router/src/helpers/cache.rs#L214-L230

Message::UnconfirmedTransaction(message) => {
// Clone the serialized message.

Trail of Bits 42 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/inbound.rs#L224-L229
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/helpers/cache.rs#L214-L230


let serialized = message.clone();
// Update the timestamp for the unconfirmed transaction.
let seen_before =

self.router().cache.insert_inbound_transaction(peer_ip,
message.transaction_id).is_some();

// Determine whether to propagate the transaction.
if seen_before {

bail!("Skipping 'UnconfirmedTransaction' from '{peer_ip}'")
}

Figure 12.2: The seen_before here may incorrectly be a None.
(snarkOS/node/router/src/inbound.rs#L249-L254)

Recommendations
Short term, change the refresh_and_insert function to first fetch the entry for the given
key and only then refresh and insert the entry into the map.

Long term, add tests for the refresh_and_insert function to ascertain whether the case
described here works as expected.

Trail of Bits 43 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/inbound.rs#L249-L254


13. Structure serialization does not declare the correct number of fields

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-13

Target: ledger/block/src/serialize.rs

Description
The Block serialization implementation declares six fields but serializes up to seven fields.
Depending on the serialization format used, the serialization or deserialization
implementations might truncate the last field.

impl<N: <N: Network> Serialize for Block<N> {
/// Serializes the block to a JSON-string or buffer.
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {

match serializer.is_human_readable() {
true => {

let mut block = serializer.serialize_struct("Block", 6)?;
block.serialize_field("block_hash", &self.block_hash)?;
block.serialize_field("previous_hash", &self.previous_hash)?;
block.serialize_field("header", &self.header)?;
block.serialize_field("authority", &self.authority)?;
block.serialize_field("transactions", &self.transactions)?;
block.serialize_field("ratifications", &self.ratifications)?;

if let Some(coinbase) = &self.coinbase {
block.serialize_field("coinbase", coinbase)?;

}

block.end()
}

Figure 13.1: ledger/block/src/serialize.rs#L17-L35

This finding does not affect the serialization formats used in the codebase, but it does
affect other serialization formats, such as serde-binary.

A variant of this issue was found using a Semgrep rule, which is included in appendix C:

impl<N: Network> Serialize for Request<N> {
/// Serializes the request into string or bytes.
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {

match serializer.is_human_readable() {
true => {

let mut transition = serializer.serialize_struct("Request", 9)?;

Trail of Bits 44 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/serialize.rs#L17-L35
https://docs.rs/serde-binary/latest/src/serde_binary/deserializer.rs.html#260-297


transition.serialize_field("caller", &self.caller)?;
transition.serialize_field("network", &self.network_id)?;
transition.serialize_field("program", &self.program_id)?;
transition.serialize_field("function", &self.function_name)?;
transition.serialize_field("input_ids", &self.input_ids)?;
transition.serialize_field("inputs", &self.inputs)?;
transition.serialize_field("signature", &self.signature)?;
transition.serialize_field("sk_tag", &self.sk_tag)?;
transition.serialize_field("tvk", &self.tvk)?;
transition.serialize_field("tsk", &self.tsk)?;
transition.serialize_field("tcm", &self.tcm)?;
transition.end()

}
false => ToBytesSerializer::serialize_with_size_encoding(self,

serializer),
}

}
}

Figure 13.2: console/program/src/request/serialize.rs#19–41

The rule also found an instance in which five fields are declared but only four are needed:

Self::Record(id, checksum, value) => {
let mut output = serializer.serialize_struct("Output", 5)?;
output.serialize_field("type", "record")?;
output.serialize_field("id", &id)?;
output.serialize_field("checksum", &checksum)?;
if let Some(value) = value {

output.serialize_field("value", &value)?;
}
output.end()

}

Figure 13.3: ledger/block/src/transition/output/serialize.rs#49–58

We have also implemented the same rule using Dylint. This rule is now part of Dylint’s
general rules.

Recommendations
Short term, update the serialize_struct call to declare the correct number of fields.

Long term, add serialization and deserialization tests for types with optional fields,
exercising the cases in which the value is None or Some.

Trail of Bits 45 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/console/program/src/request/serialize.rs#L19-L41
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/transition/output/serialize.rs#L49-L58


14. Potential overflow in the total finalize cost

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-14

Target: synthesizer/src/vm/helpers/cost.rs

Description
The total finalize cost is the sum of the cost of each finalize command. This
calculation does not have an overflow check.

finalize.commands().iter().map(|command|finalize.commands().iter().map(|command|
cost(command)).sum()

Figure 14.1: synthesizer/src/vm/helpers/cost.rs#L187-L187

Currently, the Finalize structure allows up to u16::MAX commands, and the highest
costing command is the Set command at 1 million microcredits. Since a finalize
operation with u16::MAX Set commands would still not overflow the u64 type, this finding
is of informational severity and is unexploitable.

Recommendations
Short term, review each use of sum in the codebase and determine whether overflow
checks should be added. Document the uses of sum that do not require such overflow
checks.

Trail of Bits 46 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/src/vm/helpers/cost.rs#L187-L187


15. The is_sequential function allows u64::MAX to 0 transitions

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-15

Target: ledger/narwhal/subdag/src/lib.rs

Description
Due to an unchecked addition to the round number, the is_sequential function returns
that 0 is after the u64::MAX round.

fn is_sequential<T>(map: &BTreeMap<u64, T>) -> bool {
let mut previous_round = None;
for &round in map.keys() {

match previous_round {
Some(previous) if previous + 1 != round => return false,
_ => previous_round = Some(round),

}
}
true

}

Figure 15.1: ledger/narwhal/subdag/src/lib.rs#L30-L39

Recommendations
Short term, guard against the unchecked addition by using checked_add.

Long term, add tests for the edge case of the u64 integer type.

Trail of Bits 47 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/subdag/src/lib.rs#L30-L39


16. Requests for more peers may not use newly connected peers

Severity: Informational Difficulty: N/A

Type: Timing Finding ID: TOB-ALEO-16

Target: snarkOS/node/router/src/lib.rs

Description
When a node attempts to connect to more peers, it invokes the connect function for each
candidate peer, and then it requests more peers from the connected peers. However, since
the connect function returns an async task (figure 16.1) that is not waited on (figure 16.2),
the connection attempts may not have finished before the node requests more peers from
the connected peers. As a result, the node may not request any peers from the peers that it
just connected to.

The severity of this finding is informational since this is not a security risk, but we note it in
this report since it may be undesired or unexpected behavior of the system.

Also, the request for more peers will request peers only from three random connected
peers, so even if the node waits to connect to peers, it may not request more peers from
specifically the newly connected ones.

/// Attempts to connect to the given peer IP.
pub fn connect(&self, peer_ip: SocketAddr) -> Option<JoinHandle<()>> {

...
let router = self.clone();
Some(tokio::spawn(async move {

// Attempt to connect to the candidate peer.
match router.tcp.connect(peer_ip).await { /* (...) */ }
}

}))
}

Figure 16.1: snarkOS/node/router/src/lib.rs#L137-L156

fn handle_connected_peers(&self) {
...
if num_deficient > 0 {

// Initialize an RNG.
let rng = &mut OsRng;

// Attempt to connect to more peers.
for peer_ip in

self.router().candidate_peers().into_iter().choose_multiple(rng, num_deficient) {

Trail of Bits 48 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/lib.rs#L137-L156


self.router().connect(peer_ip);
}
// Request more peers from the connected peers.
for peer_ip in

self.router().connected_peers().into_iter().choose_multiple(rng, 3) {
info!("Sending PeerRequest to {peer_ip}");
self.send(peer_ip, Message::PeerRequest(PeerRequest));

}
}

}

Figure 16.2: The node does not wait to connect to peers.
(snarkOS/node/router/src/heartbeat.rs#L189-L195)

Recommendations
Short term, have the node wait until it connects to new peers, and to prioritize newly
connected peers, before requesting more peers from all connected peers.

Trail of Bits 49 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/heartbeat.rs#L189-L195


17. Committee::new allows genesis committees with more than four members
to be created

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-17

Target: ledger/committee/src/lib.rs

Description
The Committee::new function is used to construct Committee structures, and it ensures
that some invariants are upheld. On the other hand, the new_genesis function is
specifically designed to create genesis committees and ensures that the number of
committee members equals four. However, the Committee::new function can also be
used to create genesis committees by defining the starting round as zero, but it allows
committees with an arbitrary number of elements (as long as it exceeds three).

This allows genesis committees with more than four members to be created.

pub fn new(starting_round: u64, members: IndexMap<Address<N>, (u64, bool)>) ->
Result<Self> {

// Ensure there are at least 4 members.
ensure!(members.len() >= 4, "Committee must have at least 4 members");
// Ensure all members have the minimum required stake.
ensure!(

members.values().all(|(stake, _)| *stake >= MIN_VALIDATOR_STAKE),
"All members must have at least {MIN_VALIDATOR_STAKE} microcredits in stake"

);
// Compute the total stake of the committee for this round.
let total_stake = Self::compute_total_stake(&members)?;
// Return the new committee.
Ok(Self { starting_round, members, total_stake })

}

Figure 17.1: ledger/committee/src/lib.rs#L56-L68

Recommendations
Short term, add a check to the Committee::new function to ensure that when it is called
with the starting round equal to zero, the number of members must be four.

Trail of Bits 50 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/committee/src/lib.rs#L56-L68


18. GitHub CI actions versions are not pinned

Severity: Medium Difficulty: High

Type: Patching Finding ID: TOB-ALEO-18

Target: .github/ (GitHub workflows)

Description
The GitHub Actions pipelines do not have versions pinned. A security incident in any of the
used GitHub accounts or organizations who own those pipelines can lead to a compromise
of the CI/CD pipeline, any secrets they use, and any artifacts they produce.

The following actions do not have their versions pinned:

● KyleMayes/install-llvm-action@v1

● actions-rs/toolchain@v1

● actions/checkout@v1

● battila7/get-version-action@v2

● softprops/action-gh-release@v1

Note that we included GitHub actions from organizations, such as GitHub Actions itself,
even though they are verified and already implicitly trusted by virtue of using their
software. However, if any of their repositories get hacked, the risk is still there.

Exploit Scenario
A private GitHub account with write permissions of one of the GitHub actions whose
version is not pinned is taken over by social engineering. For example, a user might use an
already leaked password and is convinced to send a 2FA code to the attacker. The attacker
updates the GitHub action to include code to change the release build artifacts and include
a backdoor to it.

Recommendations
Short term, pin all external and third-party actions to a Git commit hash. Avoid pinning to a
Git tag, as these can be overwritten. Also, use the pin-github-action tool to manage pinned
actions. GitHub Dependabot is capable of updating GitHub actions that use commit hashes.

Long term, regularly audit all pinned actions or replace them with a custom
implementation.

Trail of Bits 51 Aleo Security Assessment
PUBLIC

https://github.com/KyleMayes/install-llvm-action
https://github.com/actions-rs/toolchain
https://github.com/actions/checkout
https://github.com/battila7/get-version-action
https://github.com/softprops/action-gh-release
https://github.com/actions
https://docs.github.com/en/organizations/managing-organization-settings/verifying-or-approving-a-domain-for-your-organization
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://www.npmjs.com/package/pin-github-action
https://github.com/dependabot


19. The committee sorting tests do not consider whether the validator is open
to staking

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-19

Target: ledger/committee/src/lib.rs

Description
The code that sorts committee members follows two criteria: the (stake, is_open) tuple
and, for tiebreaks, the address’s x-coordinate.

/// Returns the committee members sorted by stake in decreasing order.

/// For members with matching stakes, we further sort by their address' x-coordinate
in decreasing order.
/// Note: This ensures the method returns a deterministic result that is
SNARK-friendly.
fn sorted_members(&self) -> indexmap::map::IntoIter<Address<N>, (u64, bool)> {

Figure 19.1: ledger/committee/src/lib.rs#L187-L190

However, neither the documentation nor the tests consider whether the is_open tuple
field is involved in the sorting.

fn sorted_members(&self) -> indexmap::map::IntoIter<Address<N>, (u64, bool)> {
let members = self.members.clone();
members.sorted_unstable_by(|address1, stake1, address2, stake2| {

// Sort by stake in decreasing order.
let cmp = stake2.cmp(stake1);
// If the stakes are equal, sort by x-coordinate in decreasing order.

Figure 19.2: ledger/committee/src/lib.rs#L190-L195

In particular, the sorting validation test fails if all committee members have the same stake:

/// Samples a committee where all validators have the same stake.
pub fn sample_committee_equal_stake_committee(num_members: u16, rng: &mut TestRng)
-> Committee<CurrentNetwork> {

assert!(num_members >= 4);
// Sample the members.
let mut members = IndexMap::new();
// Add in the minimum and maximum staked nodes.
members.insert(Address::<CurrentNetwork>::new(rng.gen()), (MIN_VALIDATOR_STAKE,

false));

Trail of Bits 52 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/committee/src/lib.rs#L187-L190
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/committee/src/lib.rs#L190-L195


while members.len() < num_members as usize - 1 {
let stake = MIN_VALIDATOR_STAKE as f64;
let is_open = rng.gen();
members.insert(Address::<CurrentNetwork>::new(rng.gen()), (stake as u64,

is_open));
}
// Return the committee.
Committee::<CurrentNetwork>::new(1, members).unwrap()

}

Figure 19.3: This function samples a committee where all validators have the same stake.

#[test]
fn test_sorted_members() {

// Initialize the RNG.
let rng = &mut TestRng::default();
// Sample a committee.
let committee = crate::test_helpers::sample_committee_equal_stake_committee(200,

rng);

// Start a timer.
let timer = std::time::Instant::now();
// Sort the members.
let sorted_members = committee.sorted_members().collect::<Vec<_>>();
println!("sorted_members: {}ms", timer.elapsed().as_millis());
// Check that the members are sorted based on our sorting criteria.
for i in 0..sorted_members.len() - 1 {

let (address1, (stake1, _)) = sorted_members[i];
let (address2, (stake2, _)) = sorted_members[i + 1];
assert!(stake1 >= stake2);
if stake1 == stake2 {

assert!(address1.to_x_coordinate() > address2.to_x_coordinate());
}

}
}

// running 1 test

// Initializing 'TestRng' with seed '11808758482616183678'

// sorted_members: 0ms
// thread 'tests::test_sorted_members' panicked at 'assertion failed:
address1.to_x_coordinate() > address2.to_x_coordinate()',
ledger/committee/src/lib.rs:379:17
// stack backtrace:
// ...
// test tests::test_sorted_members ... FAILED

Figure 19.4: The test that panics due to the discrepancy between the sorting expectation and
implementation.

Trail of Bits 53 Aleo Security Assessment
PUBLIC



Recommendations
Short term, fix the test to include the correct tiebreaking mechanism using the is_open
flag from the validator.

Trail of Bits 54 Aleo Security Assessment
PUBLIC



20. Impossible match case in authority verification routine

Severity: Undetermined Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-ALEO-20

Target: ledger/block/src/verify.rs

Description
The Block::verify_authority function validates the block authority to ensure that it is
a beacon when the expected height is zero. However, due to the saturating addition, the
expected_height variable is never zero, so the corresponding match branch is never
taken.

/// Ensures the block authority is correct.

fn verify_authority(
&self,
previous_round: u64,
previous_height: u32,
current_committee: &Committee<N>,

) -> Result<(u64, u32, i64)> {
// Determine the expected height.
let expected_height = previous_height.saturating_add(1);
// Ensure the block type is correct.
match expected_height == 0 {

true => ensure!(self.authority.is_beacon(), "The genesis block must be a
beacon block"),

false => {
#[cfg(not(any(test, feature = "test")))]
ensure!(self.authority.is_quorum(), "The next block must be a quorum

block");
}

}

Figure 20.1: ledger/block/src/verify.rs#L124-L140

Recommendations
Short term, rework the logic so that the function checks genesis blocks for the correct
authority.

Trail of Bits 55 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/verify.rs#L124-L140


21. The BFT::is_linked function does not properly determine whether two
certificates are linked

Severity: Undetermined Difficulty: Undetermined

Type: Testing Finding ID: TOB-ALEO-21

Target: node/narwhal/src/bft.rs

Description
The purpose of the is_linked function is to determine whether two certificates are linked
by a path of certificates. However, due to a mistyped implementation, the function will
almost always return false (unless forged certificates are provided).

To determine whether two certificates are linked, the function starts with the current
certificate and iterates backward starting at round-1 to fetch certificates. Then, it retains
only those certificates that have the current certificate as a previous certificate ID. This
should never happen since the current round certificate will never be a previous certificate
for a certificate in a previous round. Instead, the function should retain the certificates in
the previous round that are in any of the “current round” (traversal) previous certificates.

/// Returns `true` if there is a path from the previous certificate to the current
certificate.
fn is_linked(

&self,
previous_certificate: BatchCertificate<N>,
current_certificate: BatchCertificate<N>,

) -> Result<bool> {
// Initialize the list containing the traversal.
let mut traversal = vec![current_certificate.clone()];
// Iterate over the rounds from the current certificate to the previous

certificate.
for round in (previous_certificate.round()..current_certificate.round()).rev() {

// Retrieve all of the certificates for this past round.
let Some(certificates) = self.dag.read().get_certificates_for_round(round)

else {
// This is a critical error, as the traversal should have these

certificates.
// If this error is hit, it is likely that the maximum GC rounds should

be increased.
bail!("BFT failed to retrieve the certificates for past round {round}");

};
// Filter the certificates to only include those that are in the traversal.
traversal = certificates

.into_values()

Trail of Bits 56 Aleo Security Assessment
PUBLIC



.filter(|c| traversal.iter().any(|p|
c.previous_certificate_ids().contains(&p.certificate_id())))

.collect();
}

Figure 21.1: node/narwhal/src/bft.rs#L595-L616

The Aleo team has acknowledged that this implementation is wrong and that the call to this
function needs to be removed to ensure the protocol safely advances and syncs properly.

We ran the test coverage tool cargo-llvm-cov to determine whether this function had
been tested, and we noticed that the tests do not cover a large portion of the
BFT::update_dag function, which in turn calls the BFT::is_linked function. Other
functions such as BFT::order_dag_with_dfs are also not fully covered by tests.

Recommendations
Short term, update the implementation to fix or remove the BFT::is_linked function.

Long term, run a test coverage reporting tool such as cargo-llvm-cov to determine
limitations in the test coverage of essential protocol functionality; add tests accordingly.

Trail of Bits 57 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/narwhal/src/bft.rs#L595-L616


22. Peer is not removed from connecting_peers when handshake times out

Severity: Undetermined Difficulty: Undetermined

Type: Data Validation Finding ID: TOB-ALEO-22

Target: node/tcp/src/protocols/handshake.rs

Description
During the handshake, the peer IP is added into the collection of connecting peers in the
ensure_peer_is_allowed function (figure 22.1), and it is then removed from that
collection after the handshake (figure 22.2). However, since the whole handshake flow is
performed with a timeout by the thread spawned in the enable_handshake function
(figure 22.3), the peer IP may not be removed from the collection on time. If a peer IP is still
in the collection when it should not be, this would result in an unexpected state.

We tested this scenario by modifying the code so that the ensure_peer_is_allowed
function always bails out, and we put the thread into sleep for 10 seconds. We then
observed that the peer IP was still in the connecting_peers collection after the
handshake timed out.

impl<N: Network> Router<N> {
fn ensure_peer_is_allowed(&self, peer_ip: SocketAddr) -> Result<()> {

...
// Ensure the node is not already connecting to this peer.
if !self.connecting_peers.lock().insert(peer_ip) {

bail!("Dropping connection request from '{peer_ip}' (already shaking hands
as the initiator)")

}

Figure 22.1: node/router/src/handshake.rs#L244-L253

impl<N: Network> Router<N> {
pub async fn handshake<'a>(/* ... */) -> /* ... */ {

...
// Perform the handshake; we pass on a mutable reference to peer_ip in case

the process is broken at any point in time.
let handshake_result = if peer_side == ConnectionSide::Responder {

self.handshake_inner_initiator(peer_addr, &mut peer_ip, stream,
genesis_header).await

} else {
self.handshake_inner_responder(peer_addr, &mut peer_ip, stream,

genesis_header).await
};

Trail of Bits 58 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/router/src/handshake.rs#L244-L253


// Remove the address from the collection of connecting peers (if the
handshake got to the point where it's known).

if let Some(ip) = peer_ip {
self.connecting_peers.lock().remove(&ip);

}

Figure 22.2: node/router/src/handshake.rs#L105-L108

async fn enable_handshake(&self) {
...
tokio::spawn(async move {

debug!(parent: node.tcp().span(), "shaking hands with {} as the {:?}", addr,
!conn.side());

let result = timeout(Duration::from_millis(Self::TIMEOUT_MS),
node.perform_handshake(conn)).await;

Figure 22.3: node/tcp/src/protocols/handshake.rs#L45-L63

Recommendations
Short term, change the logic so that if the handshake times out, the peer IP is properly
removed from the connecting_peers collection.

Long term, add tests to ensure that all timeouts perform the expected cleanup properly
when the timeout happens.

Trail of Bits 59 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/router/src/handshake.rs#L105-L108
https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/tcp/src/protocols/handshake.rs#L45-L63


23. Rest API allows any origin

Severity: Low Difficulty: Undetermined

Type: Access Controls Finding ID: TOB-ALEO-23

Target: node/rest/src/lib.rs

Description
When the node hosts its rest API, it spawns the server and sets its Cross-Origin Resource
Sharing (CORS) settings so that any origin can access it. As a result, if a user hosts the node
on their desktop computer, an attacker can create a website that will spam the user’s API.

impl<N: Network, C: ConsensusStorage<N>, R: Routing<N>> Rest<N, C, R> {
fn spawn_server(&mut self, rest_ip: SocketAddr) {

let cors = CorsLayer::new()
.allow_origin(Any)
.allow_methods([Method::GET, Method::POST, Method::OPTIONS])
.allow_headers([CONTENT_TYPE]);

Figure 23.1: node/rest/src/lib.rs#L94-L99

Exploit Scenario
An attacker prepares a website that spams the broadcast transaction endpoint to make a
user’s node broadcast to other nodes with invalid transactions.

Recommendations
Short term, allow users to set the CORS settings when configuring the node. Additionally,
consider adding authentication for the broadcast transaction endpoint. (The API
authentication is currently commented out in the codebase.)

Trail of Bits 60 Aleo Security Assessment
PUBLIC

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/rest/src/lib.rs#L94-L99
https://developer.aleo.org/testnet/public_endpoints/transaction_broadcast/


24. Garbage collection does not collect the next_gc_round

Severity: Informational Difficulty: N/A

Type: Testing Finding ID: TOB-ALEO-24

Target: node/narwhal/src/helpers/storage.rs

Description
The garbage collection routine implemented in the Storage::update_current_round
function does not remove old certificates up to self.gc_round, contrary to what is stated
in the structure’s field description:

/// The `round` for which garbage collection has occurred **up to** (inclusive).
gc_round: Arc<AtomicU64>,

Figure 24.1: node/narwhal/src/helpers/storage.rs#L55-L56

if next_gc_round > current_gc_round {
// Remove the GC round(s) from storage.
for gc_round in current_gc_round..next_gc_round {

// Iterate over the certificates for the GC round.
for certificate in self.get_certificates_for_round(gc_round).iter() {

// Remove the certificate from storage.
self.remove_certificate(certificate.certificate_id());

}
}
// Update the GC round.
self.gc_round.store(next_gc_round, Ordering::SeqCst);

Figure 24.2: node/narwhal/src/helpers/storage.rs#L160-L170

Recommendations
Short term, make the garbage collection include the next_gc_round by iterating in
current_gc_round..=next_gc_round.

Long term, add garbage collection tests to ensure that the correct rounds are removed in
the correct round.

Trail of Bits 61 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/helpers/storage.rs#L55-L56
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/helpers/storage.rs#L160-L170


25. Fee verification is off by one

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-25

Target: synthesizer/src/vm/verify.rs

Description
The fee validation function rejects fees equal to the MAX_FEE value:

ensure!(*fee_amount < N::MAX_FEE, "Fee verification failed: fee exceeds the maximum
limit");

Figure 25.1: synthesizer/src/vm/verify.rs#L213-L213

Recommendations
Short term, allow the fee to equal MAX_FEE.

Long term, add positive and negative tests to check that the fee verification is implemented
correctly.

Trail of Bits 62 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/src/vm/verify.rs#L213-L213


26. Potential block reward truncation and overflow

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-26

Target: ledger/block/src/helpers/target.rs

Description
The code documentation for block rewards specifies that the value of annual_reward
should equal 0.05 * S, where S is the current total supply. The implementation determines
the annual reward by computing (total_supply / 1000) * 50. This computation will
return an incorrect result, zero, as soon as the value of total_supply is below 1000.
Computing the annual reward with (total_supply / 100) * 5 would result in the correct
percentage, except for values below 100.

/// Calculate the block reward, given the total supply, block time, and coinbase
reward.
/// R_staking = floor((0.05 * S) / H_Y1) + CR / 2
/// S = Total supply.
/// H_Y1 = Expected block height at year 1.
/// CR = Coinbase reward.
pub const fn block_reward(total_supply: u64, block_time: u16, coinbase_reward: u64)
-> u64 {

// Compute the expected block height at year 1.
let block_height_at_year_1 = block_height_at_year(block_time, 1);
// Compute the annual reward: (0.05 * S).
let annual_reward = (total_supply / 1000) * 50;
// Compute the block reward: (0.05 * S) / H_Y1.
let block_reward = annual_reward / block_height_at_year_1 as u64;
// Return the sum of the block and coinbase rewards.
block_reward + coinbase_reward / 2

}

Figure 26.1: ledger/block/src/helpers/target.rs#L20-L34

Also, the result of block_reward + coinbase_reward / 2 can overflow and lead to a
smaller than expected block reward.

// Return the sum of the block and coinbase rewards.
block_reward + coinbase_reward / 2

}

Figure 26.2: ledger/block/src/helpers/target.rs#L32-L34

Trail of Bits 63 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/helpers/target.rs#L20-L34
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/helpers/target.rs#L32-L34


Recommendations
Short term, use the suggested strategy to compute the annual_reward, or document why
the current one is preferred. Add a call to the checked_add function to safely perform the
total block reward sum while checking for overflows.

Trail of Bits 64 Aleo Security Assessment
PUBLIC



27. Saturated additions and subtractions can cause inconsistencies

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-27

Target: node/narwhal/src/helpers/cache.rs,
node/router/helpers/cache.rs

Description
The Cache structure uses a u16 to track counts for cached items, which the router uses to
track outbound puzzle requests. Counts are incremented and decremented using the
saturating_add and saturating_sub methods.

fn increment_counter<K: Hash + Eq>(map: &RwLock<HashMap<K, u16>>, key: K) -> u16 {
let mut map_write = map.write();
// Load the entry for the key, and increment the counter.
let entry = map_write.entry(key).or_default();
*entry = entry.saturating_add(1);
// Return the updated counter.
*entry

}

[...]

fn decrement_counter<K: Copy + Hash + Eq>(map: &RwLock<HashMap<K, u16>>, key: K) ->
u16 {

let mut map_write = map.write();
// Load the entry for the key, and decrement the counter.
let entry = map_write.entry(key).or_default();
let value = entry.saturating_sub(1);
// If the entry is 0, remove the entry.
if *entry == 0 {

map_write.remove(&key);
} else {

*entry = value;
}
// Return the updated counter.
value

}

Figure 27.1: node/router/src/helpers/cache.rs

If an addition saturates, subsequent subtractions can cause the count to hit zero while
outbound puzzle requests are still outstanding. In that case, the
contains_outbound_puzzle_requests method will incorrectly return false.

Trail of Bits 65 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/router/src/helpers/cache.rs


As currently configured, it does not appear possible to trigger this condition; puzzle
requests are rate limited, and the cache automatically ages off old values at a rate that
should prevent a u16 from reaching saturation. However, if the code were to be reused
elsewhere, or the timeout values were to change as part of a scaling effort, incorrect
tracking could result. Additionally, in a multithreaded scenario, it is possible for puzzle
requests to become “backed up” while the cache is locked, causing a large number of
requests to be processed at once; this may lead to saturation and incorrect results.

Note that the cache code is also present in the version of
node/narwhal/src/helpers/cache.rs reviewed during the audit. As of the time of this
writing, that code has been refactored in a way that obviates this issue. We reference it
here for completeness.

Recommendations
Short term, update to a larger integer type, such as u32 or u64. Alternatively, ensure that
the saturation conditions are well documented in case of reuse.

Long term, add error-handling code to the increment_counter and
decrement_counter functions to handle the saturation cases.

Trail of Bits 66 Aleo Security Assessment
PUBLIC



28. IndexSet::remove does not preserve the order of the IndexSet

Severity: Informational Difficulty: N/A

Type: Testing Finding ID: TOB-ALEO-28

Target: node/narwhal/src/helpers/storage.rs

Description
The IndexSet::remove function changes the order of the index set. This behavior might
result in an unintended order of the index sets. For example, Storage’s rounds will stop
being in insertion order after a removal.

/// Removes the given `certificate ID` from storage.
///
/// This method triggers updates to the `rounds`, `certificates`, `batch_ids`, and
`transmissions` maps.
///
/// If the certificate was successfully removed, `true` is returned.
/// If the certificate did not exist in storage, `false` is returned.
pub fn remove_certificate(&self, certificate_id: Field<N>) -> bool {

Figure 28.1: node/narwhal/src/helpers/storage.rs#L508-L514

All current uses of the IndexSet::remove seem benign; however, the rounds_iter
function does iterate over that set.

/// Returns an iterator over the `(round, (certificate ID, batch ID, author))`
entries.
pub fn rounds_iter(&self) -> impl Iterator<Item = (u64, IndexSet<(Field<N>,
Field<N>, Address<N>)>)> {

self.rounds.read().clone().into_iter()
}

Figure 28.2: node/narwhal/src/helpers/storage.rs#677–680

Recommendations
Short term, identify every use of IndexSet::remove and IndexMap::remove, determine
whether its use is appropriate, and either document it or replace it with the shift_remove
function. Rename the instances of remove that remain in the code to the equivalent
function named swap_remove. Alternatively, replace IndexSet with HashSet where
possible.

Trail of Bits 67 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/helpers/storage.rs#L508-L514
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/helpers/storage.rs#L99C1-L101C6
https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/narwhal/src/helpers/storage.rs#L677-L680


29. The batch certificate ID calculation does not include the number of
signatures in the preimage

Severity: Informational Difficulty: N/A

Type: Cryptography Finding ID: TOB-ALEO-29

Target: ledger/narwhal/batch-certificate/src/lib.rs

Description
The batch certificate ID calculation does not include the number of signatures in the
preimage.

impl<N: Network> BatchCertificate<N> {
/// Returns the certificate ID.
pub fn compute_certificate_id(batch_id: Field<N>, signatures:

&IndexMap<Signature<N>, i64>) -> Result<Field<N>> {
let mut preimage = Vec::new();
// Insert the batch ID.
batch_id.write_le(&mut preimage)?;
// Insert the signatures.
for (signature, timestamp) in signatures {

// Insert the signature.
signature.write_le(&mut preimage)?;
// Insert the timestamp.
timestamp.write_le(&mut preimage)?;

}
// Hash the preimage.
N::hash_bhp1024(&preimage.to_bits_le())

}
}

Figure 29.2: ledger/narwhal/batch-certificate/src/lib.rs#L150-L166

This contrasts with other functions that also include the arrays’ length in the hash
preimage.

impl<N: Network> BatchHeader<N> {
/// Returns the batch ID.
pub fn compute_batch_id(

author: Address<N>,
round: u64,
timestamp: i64,
transmission_ids: &IndexSet<TransmissionID<N>>,
previous_certificate_ids: &IndexSet<Field<N>>,

) -> Result<Field<N>> {

Trail of Bits 68 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-certificate/src/lib.rs#L150-L166


let mut preimage = Vec::new();
// Insert the author.
author.write_le(&mut preimage)?;
// Insert the round number.
round.write_le(&mut preimage)?;
// Insert the timestamp.
timestamp.write_le(&mut preimage)?;
// Insert the number of transmissions.
u64::try_from(transmission_ids.len())?.write_le(&mut preimage)?;
// Insert the transmission IDs.
for transmission_id in transmission_ids {

transmission_id.write_le(&mut preimage)?;
}
// Insert the number of previous certificate IDs.
u64::try_from(previous_certificate_ids.len())?.write_le(&mut preimage)?;
// Insert the previous certificate IDs.
for certificate_id in previous_certificate_ids {

// Insert the certificate ID.
certificate_id.write_le(&mut preimage)?;

}
// Hash the preimage.
N::hash_bhp1024(&preimage.to_bits_le())

}
}

Figure 29.1: ledger/narwhal/batch-header/src/to_id.rs#L30-L62

Recommendations
Short term, add the number of signatures to the hash preimage.

Trail of Bits 69 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-header/src/to_id.rs#L30-L62


30. Missing validations in block metadata and header validation functions

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-30

Target: ledger/block/src/header/metadata/mod.rs

Description
The block header metadata validation function does not include checks for the
cumulative_weight and proof_targets variables, and the
last_coinbase_timestamp and block header timestamp variables are not compared.

/// Returns `true` if the block metadata is well-formed.
pub fn is_valid(&self) -> bool {

match self.height == 0u32 {
true => self.is_genesis(),
false => {

// Ensure the network ID is correct.
self.network == N::ID

// Ensure the round is nonzero.
&& self.round != 0u64
// Ensure the height is nonzero.
&& self.height != 0u32
// Ensure the round is at least as large as the height.
&& self.round >= self.height as u64
// Ensure the coinbase target is at or above the minimum.
&& self.coinbase_target >= N::GENESIS_COINBASE_TARGET
// Ensure the proof target is at or above the minimum.
&& self.proof_target >= N::GENESIS_PROOF_TARGET
// Ensure the coinbase target is larger than the proof target.
&& self.coinbase_target > self.proof_target
// Ensure the last coinbase target is at or above the minimum.
&& self.last_coinbase_target >= N::GENESIS_COINBASE_TARGET
// Ensure the last coinbase timestamp is after the genesis

timestamp.
&& self.last_coinbase_timestamp >= N::GENESIS_TIMESTAMP
// Ensure the timestamp in the block is after the genesis timestamp.
&& self.timestamp > N::GENESIS_TIMESTAMP

Figure 30.1: ledger/block/src/header/metadata/mod.rs#L89-L113

The block header validation function is missing a non-zero validation for the
solutions_root field element:

/// The header for the block contains metadata that uniquely identifies the block.

Trail of Bits 70 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/header/metadata/mod.rs#L89-L113


#[derive(Copy, Clone, PartialEq, Eq, Hash)]
pub struct Header<N: Network> {

/// The Merkle root representing the blocks in the ledger up to the previous
block.

previous_state_root: N::StateRoot,
/// The Merkle root representing the transactions in the block.
transactions_root: Field<N>,
/// The Merkle root representing the on-chain finalize including the current

block.
finalize_root: Field<N>,
/// The Merkle root representing the ratifications in the block.
ratifications_root: Field<N>,
/// The solutions root of the puzzle.
solutions_root: Field<N>,
/// The metadata of the block.
metadata: Metadata<N>,

}

Figure 30.2: ledger/block/src/header/mod.rs#32–47

/// Returns `true` if the block header is well-formed.
pub fn is_valid(&self) -> bool {

match self.height() == 0u32 {
true => self.is_genesis(),
false => {

// Ensure the previous ledger root is nonzero.
*self.previous_state_root != Field::zero()

// Ensure the transactions root is nonzero.
&& self.transactions_root != Field::zero()
// Ensure the finalize root is nonzero.
&& self.finalize_root != Field::zero()
// Ensure the ratifications root is nonzero.
&& self.ratifications_root != Field::zero()
// Ensure the metadata is valid.
&& self.metadata.is_valid()

}
}

}

Figure 30.3: ledger/block/src/header/mod.rs#75–92

Recommendations
Short term, determine whether such validations are necessary. If so, include them;
otherwise, add code comments describing why those structure fields do not need
validation.

Trail of Bits 71 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/header/mod.rs#L32-L47
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/header/mod.rs#L75-L92


31. The order of the saturating_add and checked_sub operations is not
documented

Severity: Informational Difficulty: N/A

Type: Data Validation Finding ID: TOB-ALEO-31

Target: ledger/src/helpers/supply.rs

Description
The update_total_supply function uses both saturating_add and checked_sub
operations to compute the next_total_supply value. Using both of these operations can
lead to a different value for total_suply if the order of the operations is changed. Since
this is an edge case for when the value of starting_supply is close to u64::MAX,
documenting this behavior should suffice.

As an example, let the starting supply be u64::MAX, BLOCK_REWARD be 1, PUZZLE_REWARD
be 1, and fee be 1_000_000_000. This would result in an updated total supply of initial
- fee. On the other hand, if the fee were subtracted before the rewards were added, then
the final result would be initial - fee + 2.

pub fn update_total_supply<N: Network>(
starting_total_supply_in_microcredits: u64,
block_reward: u64,
puzzle_reward: u64,
transactions: &Transactions<N>,

) -> Result<u64> {
// Initialize the next total supply of microcredits.
let mut next_total_supply = starting_total_supply_in_microcredits;
// Add the block reward to the total supply.
next_total_supply = next_total_supply.saturating_add(block_reward);
// Add the puzzle reward to the total supply.
next_total_supply = next_total_supply.saturating_add(puzzle_reward);

// Iterate through the transactions to calculate the next total supply of
microcredits.

for confirmed in transactions.iter() {
// Subtract the fee from the total supply.
next_total_supply = next_total_supply

.checked_sub(*confirmed.fee_amount()?)

.ok_or_else(|| anyhow!("The proposed fee underflows the total supply of
microcredits"))?;

// Iterate over the transitions in the transaction.
for transition in confirmed.transaction().transitions() {

Trail of Bits 72 Aleo Security Assessment
PUBLIC



// If the transition contains a split, subtract the amount from the
total supply.

if transition.is_split() {
// TODO (howardwu): Add a test that calls `split`, checks the output

records - input records == 10_000u64.
// Subtract the amount split from the total supply.
next_total_supply = next_total_supply

.checked_sub(10_000u64)

.ok_or_else(|| anyhow!("The proposed split underflows the total
supply of microcredits"))?;

}
}

}

Figure 31.1: ledger/src/helpers/supply.rs#L21-L52

Recommendations
Short term, document that the order of saturating additions and subtractions matters.

Trail of Bits 73 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/src/helpers/supply.rs#L21-L52


A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 74 Aleo Security Assessment
PUBLIC



Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 75 Aleo Security Assessment
PUBLIC



B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Trail of Bits 76 Aleo Security Assessment
PUBLIC



Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 77 Aleo Security Assessment
PUBLIC



C. Code Quality Findings

We identified the following code quality issues through manual and automated code
review.

● Typo in code comment: In the comment, a assert should be an assert.

/// The opcode is for a assert operation (i.e. `assert`).

Figure C.1: synthesizer/program/src/logic/instruction/opcode/mod.rs#20

● Copy-pasted code: Several places throughout the codebase have code similar to
figure C.2. Changes to the list of calls will require numerous modifications, making it
easy to miss functions that need changes. Consider writing a macro to centralize the
list of calls into a single place, with the desired method passed as an argument.

/// Starts an atomic batch write operation.
fn start_atomic(&self) {

self.state_root_map().start_atomic();
self.reverse_state_root_map().start_atomic();
self.id_map().start_atomic();
self.reverse_id_map().start_atomic();
self.header_map().start_atomic();
self.authority_map().start_atomic();
self.transactions_map().start_atomic();
self.confirmed_transactions_map().start_atomic();
self.transaction_store().start_atomic();
self.ratifications_map().start_atomic();
self.coinbase_solution_map().start_atomic();
self.coinbase_puzzle_commitment_map().start_atomic();

}

...

/// Checkpoints the atomic batch.
fn atomic_checkpoint(&self) {

self.state_root_map().atomic_checkpoint();
self.reverse_state_root_map().atomic_checkpoint();
self.id_map().atomic_checkpoint();
self.reverse_id_map().atomic_checkpoint();
self.header_map().atomic_checkpoint();
self.authority_map().atomic_checkpoint();
self.transactions_map().atomic_checkpoint();
self.confirmed_transactions_map().atomic_checkpoint();
self.transaction_store().atomic_checkpoint();
self.ratifications_map().atomic_checkpoint();
self.coinbase_solution_map().atomic_checkpoint();
self.coinbase_puzzle_commitment_map().atomic_checkpoint();

}

Trail of Bits 78 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/opcode/mod.rs#L20-L20


Figure C.2: ledger/store/src/block/mod.rs#184–230

● Use of unnamed constants instead of defined const values: The codebase
contains many instances of unnamed constants. It is better to define these as const
values to improve the code’s maintainability. This is especially useful where the
same constant is used in multiple places.

// Approximate the fractional multiplier as 2^RBITS * 2^fractional, where:
// 2^x ~= (1 + 0.695502049*x + 0.2262698*x**2 + 0.0782318*x**3)
let fractional_multiplier = RADIX

+ ((195_766_423_245_049_u128 * fractional
+ 971_821_376_u128 * fractional.pow(2)
+ 5_127_u128 * fractional.pow(3)
+ 2_u128.pow(RBITS * 3 - 1))
>> (RBITS * 3));

Figure C.3: The use of unnamed constants in the retarget algorithm
(snarkVM/ledger/block/src/helpers/target.rs#181–188)

● Commented-out code: Both the snarkVM and snarkOS codebases contain
commented-out code. In several places, such code is clearly documented as a
“TODO,” but in many places, it is not documented at all.

/// Handles a `BeaconPropose` message.
fn beacon_propose(&self, _peer_ip: SocketAddr, _serialized: BeaconPropose<N>,
_block: Block<N>) -> bool {

// pub const ALEO_MAXIMUM_FORK_DEPTH: u32 = (NUM_RECENTS as
u32).saturating_sub(1);

//
// // Retrieve the connected peers by height.
// let mut peers = self.router().sync().get_sync_peers_by_height();
// // Retain the peers that 1) not the sender, and 2) are within the fork

depth of the given block.
// peers.retain(|(ip, height)| *ip != peer_ip && *height < block.height()

+ ALEO_MAXIMUM_FORK_DEPTH);
//
// // Broadcast the `BeaconPropose` to the peers.
// if !peers.is_empty() {
// for (peer_ip, _) in peers {
// self.send(peer_ip, Message::BeaconPropose(serialized.clone()));
// }
// }
false

}

Figure C.4: The code inside this method is commented-out.
(snarkOS/node/router/src/inbound.rs#273–289)

● Possible panics in functions that return a Result: Calling unwrap or expect
inside a function that returns a Result can cause a panic, whereas the function

Trail of Bits 79 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/store/src/block/mod.rs#L184-L230
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/helpers/target.rs#L181-L188
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/inbound.rs#L273-L289


could return an Error instead. Returning an Error is preferable, as it allows the
caller to decide what to do (which may still be a panic, if necessary), leading to
clearer error handling.

/// Starts the snarkOS node.
pub fn parse(self) -> Result<String> {

// Initialize the logger.
let log_receiver = crate::helpers::initialize_logger(self.verbosity,

self.nodisplay, self.logfile.clone());
// Initialize the runtime.
Self::runtime().block_on(async move {

// Clone the configurations.
let mut cli = self.clone();
// Parse the network.
match cli.network {

3 => {
// Parse the node from the configurations.
let node = cli.parse_node::<Testnet3>().await.expect("Failed

to parse the node");
// If the display is enabled, render the display.
if !cli.nodisplay {

// Initialize the display.
Display::start(node, log_receiver).expect("Failed to

initialize the display");
}

}
_ => panic!("Invalid network ID specified"),

};

Figure C.5: Potential panic inside a function that returns a Result
(snarkOS/cli/src/commands/start.rs#99–119)

● References to the deprecated increment and decrement instructions in tests
and code comments: These references should be removed.

// Decrement
let expected = "decrement object[r0] by r1;";
Command::<CurrentNetwork>::parse(expected).unwrap_err();

Figure C.6: synthesizer/program/src/logic/command/mod.rs#350–352

// Decrement
let expected = "decrement object[r0] by r1;";
Command::<CurrentNetwork>::parse(expected).unwrap_err();

// Instruction
let expected = "add r0 r1 into r2;";
let command = Command::<CurrentNetwork>::parse(expected).unwrap().1;
assert_eq!(Command::Instruction(Instruction::from_str(expected).unwrap()),
command);
assert_eq!(expected, command.to_string());

Trail of Bits 80 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/cli/src/commands/start.rs#L99-L119
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/command/mod.rs#L350-L352


// Increment
let expected = "increment object[r0] by r1;";
Command::<CurrentNetwork>::parse(expected).unwrap_err();

Figure C.7: synthesizer/program/src/logic/command/mod.rs#L427-L439

● Unresolved warnings from running clippy with the pedantic lint: Specifically,
the following issues related to truncation and casting need to be resolved:

○ Casting a u64 to a u8 will lead to unexpected behavior in the following
method, as it will write a single block as long as the number of blocks is 1
plus a multiple of 256.

fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
// Prepare the number of blocks.
let num_blocks = self.0.len() as u8;
// Ensure that the number of blocks is within the allowed range.
if num_blocks > Self::MAXIMUM_NUMBER_OF_BLOCKS {

return Err(error("Block response exceeds maximum number of
blocks"));

}
// Write the number of blocks.
num_blocks.write_le(&mut writer)?;
// Write the blocks.
self.0.iter().take(num_blocks as usize).try_for_each(|block|

block.write_le(&mut writer))
}

Figure C.8: This truncation will lead to unexpected behavior.
(snarkOS/node/messages/src/block_response.rs#79–90)

○ Casting an i64 to a u64 will lead to unexpected behavior in the following
method, as the sign would be lost. A node that has an incorrect timestamp
(e.g., in the past) may try to write a block before the round time has expired.

let elapsed_time =
current_timestamp.saturating_sub(beacon.ledger.latest_timestamp()) as
u64;

Figure C.9: An incorrect timestamp will lead to unexpected behavior.
(snarkOS/node/src/beacon/mod.rs#230)

● Improper validation of the number of operands in the Literals formatter
implementation: The function should error out if self.operands.len() does not
equal NUM_OPERANDS:

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>,

Trail of Bits 81 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/command/mod.rs#L427-L439
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/messages/src/block_response.rs#L79-L90
https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/src/beacon/mod.rs#L230


const NUM_OPERANDS: usize> Display
for Literals<N, O, NUM_OPERANDS>

{
/// Prints the operation to a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {

// Ensure the number of operands is within the bounds.
if NUM_OPERANDS > N::MAX_OPERANDS {

return Err(fmt::Error);
}
// Ensure the number of operands is correct.
if self.operands.len() > NUM_OPERANDS {

return Err(fmt::Error);
}

Figure C.10:
synthesizer/program/src/logic/instruction/operation/literals.rs#26

9–281

● Imprecise specification of Process.VerifyExecution’s input and output
validation: The specification should state that the function checks that
len(inputs) is less than or equal to MAX_INPUTS and that len(outputs) is less
than or equal to MAX_OUTPUTS to match the implementation.

Figure C.11: The specification for Process.VerifyExecution

● Use of if conditions where else/if would be preferred: Use else/if to check
whether the message type is a puzzle request in the send function since it cannot
be both a BlockRequest and a PuzzleRequest.

// If the message type is a block request, add it to the cache.

Trail of Bits 82 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/literals.rs#L269-L281
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/literals.rs#L269-L281
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/program/src/logic/instruction/operation/literals.rs#L269-L281
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/process/src/verify_execution.rs#L68-L71


if let Message::BlockRequest(request) = message {
self.router().cache.insert_outbound_block_request(peer_ip, request);

}
// If the message type is a puzzle request, increment the cache.
if matches!(message, Message::PuzzleRequest(_)) {

self.router().cache.increment_outbound_puzzle_requests(peer_ip);
}

Figure C.12: snarkOS/node/router/src/outbound.rs#L51-L58

● Missing const assertion enforcing that MAX_WORKERS is nonzero: A compile time
assertion would prevent the MAX_WORKERS constant from being set to zero, which
would cause a division by zero in the assign_to_worker function.

pub fn assign_to_worker<N: Network>(transmission_id: impl
Into<TransmissionID<N>>, num_workers: u8) -> Result<u8> {

// Hash the transmission ID to a u128.
let hash = sha256d_to_u128(&transmission_id.into().to_bytes_le()?);
// Convert the hash to a worker ID.
let worker_id = (hash % num_workers as u128) as u8;
// Return the worker ID.
Ok(worker_id)

}

Figure C.13: node/narwhal/src/helpers/partition.rs#40–47

● Unused and outdated functions: The is_bond and is_unbond functions
reference nonexistent functions from credits.aleo:

impl<N: Network> Transition<N> {
/// Returns `true` if this is a `bond` transition.
#[inline]
pub fn is_bond(&self) -> bool {

self.program_id.to_string() == "credits.aleo" &&
self.function_name.to_string() == "bond"

}

/// Returns `true` if this is an `unbond` transition.
#[inline]
pub fn is_unbond(&self) -> bool {

self.program_id.to_string() == "credits.aleo" &&
self.function_name.to_string() == "unbond"

}

Figure C.14: ledger/block/src/transition/mod.rs#299–311

● Unused constant: snarkVM defines an unused MAX_COMMITTEE_SIZE constant.

/// The maximum number of nodes that can be in a committee.
pub const MAX_COMMITTEE_SIZE: u16 = 100; // members

Trail of Bits 83 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/dc0c10b035069c6d93024092a7ead1540e6d75ed/node/router/src/outbound.rs#L51-L58
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/helpers/partition.rs#L40-L47
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/transition/mod.rs#L299-L311


Figure C.15: ledger/committee/src/prop_tests.rs#34–35

● Copy-pasted comment: The comment should read Remove the round:

// Insert the round.
{

// Acquire the write lock.
let mut rounds = self.rounds.write();
// Remove the round to certificate ID entry.
rounds.entry(round).or_default().remove(&(certificate_id, batch_id,

author));
// If the round is empty, remove it.
if rounds.get(&round).map_or(false, |entries| entries.is_empty()) {

rounds.remove(&round);
}

}

Figure C.16: node/narwhal/src/helpers/storage.rs#527–537

● Imprecise code comment: The comment states that None is returned in a certain
case, but the default value is actually returned:

/// Returns the certificates for the given `round`.
/// If the round does not exist in storage, `None` is returned.
pub fn get_certificates_for_round(&self, round: u64) ->
IndexSet<BatchCertificate<N>> {

// The genesis round does not have batch certificates.
if round == 0 {

return Default::default();
}
// Retrieve the certificates.
if let Some(entries) = self.rounds.read().get(&round) {

let certificates = self.certificates.read();
entries.iter().flat_map(|(certificate_id, _, _)|

certificates.get(certificate_id).cloned()).collect()
} else {

Default::default()
}

}

Figure C.17: node/narwhal/src/helpers/storage.rs#246–260

● Incorrect use of the BitOr operator with the matches!macro: There are two
cases in which the BitOr operator, |, is used to compute multiple matches!
macros in an if condition, which causes more code to be executed than needed.
The BitOr operator should be used to mark different match cases within a single
matches! macro instead. In other words, the following code should be refactored:

matches!(..., case1) | matches!(..., case2)

Trail of Bits 84 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/committee/src/prop_tests.rs#L34-L35
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/helpers/storage.rs#L527-L537
https://github.com/AleoHQ/snarkOS/blob/bac55af25189575c35ef3e2cc2d0777c1f6e5be7/node/narwhal/src/helpers/storage.rs#L246-L260


It should be refactored to the following:

matches!(..., case1 | case2)

impl<N: Network> Transport<N> for Gateway<N> {
async fn send(&self, peer_ip: SocketAddr, event: Event<N>) -> ... {

...
if matches!(event, Event::CertificateRequest(_)) | matches!(event,

Event::CertificateResponse(_)) { ... }
else if matches!(event, Event::TransmissionRequest(_)) |

matches!(event, Event::TransmissionResponse(_)) { ... }

Figure C.18: node/narwhal/src/gateway.rs#851–858

Appendix C includes a Semgrep rule for this pattern.

● Discrepancy between code comment and implementation: The code comment
states that the function exits early if the value of commit_round is odd, but it does
so when commit_round is even:

// Construct the commit round.
let commit_round = certificate_round.saturating_sub(1);
// If the commit round is odd, return early.
if commit_round % 2 != 1 {

return Ok(());
}

Figure C.19: node/narwhal/src/bft.rs#366–371

● Incomplete code comment: The batch ID hash implementation also includes the
author, but this is missing from the code comment.

pub struct BatchHeader<N: Network> {
/// The batch ID, defined as the hash of the round number, timestamp,

transmission IDs, and previous batch certificate IDs.
batch_id: Field<N>,

Figure C.20: ledger/narwhal/batch-header/src/lib.rs#32–34

/// Returns the batch ID.
pub fn compute_batch_id(

author: Address<N>,
round: u64,
timestamp: i64,
transmission_ids: &IndexSet<TransmissionID<N>>,
previous_certificate_ids: &IndexSet<Field<N>>,

) -> Result<Field<N>> {
let mut preimage = Vec::new();
// Insert the author.
author.write_le(&mut preimage)?;

Trail of Bits 85 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/narwhal/src/gateway.rs#L851-L858
https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/narwhal/src/bft.rs#L366-L371
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-header/src/lib.rs#L32-L34


// Insert the round number.
round.write_le(&mut preimage)?;
// Insert the timestamp.
timestamp.write_le(&mut preimage)?;
// Insert the number of transmissions.
u64::try_from(transmission_ids.len())?.write_le(&mut preimage)?;
// Insert the transmission IDs.
for transmission_id in transmission_ids {

transmission_id.write_le(&mut preimage)?;
}
// Insert the number of previous certificate IDs.
u64::try_from(previous_certificate_ids.len())?.write_le(&mut preimage)?;
// Insert the previous certificate IDs.
for certificate_id in previous_certificate_ids {

// Insert the certificate ID.
certificate_id.write_le(&mut preimage)?;

}
// Hash the preimage.
N::hash_bhp1024(&preimage.to_bits_le())

}

Figure C.21: ledger/narwhal/batch-header/src/to_id.rs#31–61

● Use of code from an already defined function: The CoinbasePuzzle::verify
function uses code that is refactored in a function below.

// Retrieve the coinbase verifying key.
let coinbase_verifying_key = match self {

Self::Prover(coinbase_proving_key) =>
&coinbase_proving_key.verifying_key,

Self::Verifier(coinbase_verifying_key) => coinbase_verifying_key,
};

...
}

/// Returns the coinbase verifying key.
pub fn coinbase_verifying_key(&self) -> &CoinbaseVerifyingKey<N> {

match self {
Self::Prover(coinbase_proving_key) =>

&coinbase_proving_key.verifying_key,
Self::Verifier(coinbase_verifying_key) => coinbase_verifying_key,

}

Figure C.22: ledger/coinbase/src/lib.rs#342–377

● Stale code comment in Subdag::from: The implementation has a code comment
suggesting that there is a check ensuring that the leader certificate is in an even
round, but this check is not needed.

// Ensure the leader certificate is an even round.

Trail of Bits 86 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-header/src/to_id.rs#L31-L61
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/coinbase/src/lib.rs#L342-L377


Ok(Self { subdag })

Figure C.23: ledger/narwhal/subdag/src/lib.rs#L95-L96

● Magic constants used for decoding. Undocumented constants (0, 1, 2) are used in
ledger/block/src/ratify/bytes.rs for ratify object variant detection. These
values should be documented, clearly named constants.

let literal = match variant {
0 => {

// Read the committee.
[...]

Self::Genesis(committee, public_balances)
}
1 => {

// Read the amount.
let amount: u64 = FromBytes::read_le(&mut reader)?;

Figure C.24: ledger/block/src/ratify/bytes.rs#L29

● Timestamps not checked for staleness: A “TODO” comment in
node/narwhal/src/helpers/timestamp.rs notes that timestamps for
proposed blocks should be no older than the last block’s timestamp, but that
enforcing this would require the function to be refactored to accept block
information. If the complexity of refactoring is prohibitive, basic checks can be
added to determine whether a request is older than the estimated time required to
add, say, three new blocks to the chain. Even a simple check to ensure that the
timestamp is not older than the Aleo software itself could detect some bugs.

● Timestamps checked after signatures are checked: In
node/narwhal/src/helpers/proposal.rs, the signature of a proposed block is
verified before the timestamp is checked. Since the timestamp check is significantly
cheaper than a signature verification, it should be done first.

● Copy-pasted code comment: The implementation computes only the proof target,
and it does not ensure correctness, like the comment suggests.

// Ensure the proof target is correct.
let expected_proof_target = proof_target(expected_coinbase_target,
N::GENESIS_PROOF_TARGET);

Figure C.25: ledger/block/src/verify.rs#322–323

● Inadequate memory capacity allocated for BytesMut: The BytesMut object used
in the encoding and decoding of Noise protocol messages can be initialized with a
more suitable memory capacity. Currently, the code uses the number of encrypted
chunks, when it should allocate the number of encrypted chunks times the chunk

Trail of Bits 87 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/subdag/src/lib.rs#L95-L96
https://github.com/AleoHQ/snarkVM/blob/99e38a05181e171223ed1e55e34ff7d146549a8f/ledger/block/src/ratify/bytes.rs#L29
https://github.com/AleoHQ/snarkOS/blob/8baf62b33a886b7d540a5a932668fad2d4e0b882/node/narwhal/src/helpers/timestamp.rs#L26
https://github.com/AleoHQ/snarkOS/blob/8baf62b33a886b7d540a5a932668fad2d4e0b882/node/narwhal/src/helpers/proposal.rs#L164
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/block/src/verify.rs#L322-L323


size, MAX_MESSAGE_LEN. The decoding part of the code does not preallocate any
space for the buffer, and it will always result in additional allocations.

let mut buffer = BytesMut::with_capacity(encrypted_chunks.len());
for chunk in encrypted_chunks {

buffer.extend_from_slice(&chunk);
noise.tx_nonce += 1;

}

Figure C.26: node/narwhal/events/src/helpers/codec.rs#221–225

// Collect chunks into plaintext to be passed to the message codecs.
let mut plaintext = BytesMut::new();
for chunk in decrypted_chunks {

plaintext.extend_from_slice(&chunk);
noise.rx_nonce += 1;

}

Figure C.27: node/narwhal/events/src/helpers/codec.rs#276–281

● Stale code comment: The code comment suggests that the insertion will fail if the
key already exists, but the underlying data structure is a vector and not a map; a
map insertion will never fail for that reason.

/// Returns the speculative mapping entries for the given `program ID` and
`mapping name`.
fn get_mapping_speculative(

&self,
program_id: &ProgramID<N>,
mapping_name: &Identifier<N>,

) -> Result<Vec<(Plaintext<N>, Value<N>)>> {
// Retrieve the mapping ID.
let Some(mapping_id) = self.get_mapping_id_speculative(program_id,

mapping_name)? else {
bail!("Illegal operation: mapping '{mapping_name}' is not initialized

- cannot update key-value.")
};
// Retrieve the key-value IDs for the mapping ID.
let Some(key_value_ids) =

self.key_value_id_map().get_speculative(&mapping_id)? else {
bail!("Illegal operation: mapping ID '{mapping_id}' is not

initialized - cannot update key-value.")
};
// Initialize the entries vector.
let mut entries = Vec::with_capacity(key_value_ids.len());
// Iterate over the key IDs.
for key_id in key_value_ids.keys() {

// Retrieve the key.
let Some(key) = self.get_key_speculative(key_id)? else {

bail!("Malformed operation: key ID '{key_id}' does not exist in
storage - corruption detected.")

Trail of Bits 88 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/narwhal/events/src/helpers/codec.rs#L221-L225
https://github.com/AleoHQ/snarkOS/blob/63292c18b04ddb2bbf0b324224ce234ca6c9d898/node/narwhal/events/src/helpers/codec.rs#L276-L281


};
// Retrieve the value.
let Some(value) = self.get_value_from_key_id_speculative(key_id)?

else {
bail!("Malformed operation: key ID '{key_id}' does not exist in

storage - corruption detected.")
};
// Insert the entry, and fail if the key already exists.
entries.push((key, value));

Figure C.28: ledger/store/src/program/finalize.rs#613–640

● Undocumented reason for cheaper namespace cost for longer program_id:
The namespace cost formula makes it the cheapest if the program_id has 10 or
more characters. Some intuition on why this is the intended case could be added to
the code comment.

// Compute the namespace cost in credits: 10^(10 - num_characters).
let namespace_cost = 10u64

.checked_pow(10u32.saturating_sub(num_characters))

.ok_or(anyhow!("The namespace cost computation overflowed for a
deployment"))?

.saturating_mul(1_000_000); // 1 microcredit = 1e-6 credits.

Figure C.29: synthesizer/src/vm/helpers/cost.rs#L37-L41

● Undocumented reason why median_timestamp does not consider
even-lengthed arrays: The median_timestamp function simply returns the middle
element of the sorted array. In the case of an even-lengthed array, the median is
usually computed by taking the average of the two middle elements. A code
comment describing why this is unnecessary should be added.

/// Returns the median timestamp of the batch ID from the committee.
pub fn median_timestamp(&self) -> i64 {

let mut timestamps =
self.timestamps().chain([self.batch_header.timestamp()].into_iter()).collect:
:<Vec<_>>();

timestamps.sort_unstable();
timestamps[timestamps.len() / 2]

}

Figure C.30: ledger/narwhal/batch-certificate/src/lib.rs#122–127

Trail of Bits 89 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/store/src/program/finalize.rs#L613-L640
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/synthesizer/src/vm/helpers/cost.rs#L37-L41
https://github.com/AleoHQ/snarkVM/blob/9fcb15fc501ae9734b1a8fe513b90a2e8f9cda5f/ledger/narwhal/batch-certificate/src/lib.rs#L122-L127


D. Automated Analysis Tool Configuration

As part of this assessment, we used the following tools to perform automated testing of the
codebase.

D.1. Semgrep
We used the static analyzer Semgrep to search for dangerous API patterns and weaknesses
in the source code repository. We also wrote custom rules to find variants of manually
found issues.

semgrep --metrics=off --sarif --config custom_rule_path.yml

Figure D.1: The invocation command used to run Semgrep for each custom rule

semgrep --metrics=off --sarif --config "p/trailofbits"

Figure D.2: The invocation command used to run Semgrep with Trail of Bits’ public rules

Unvalidated Integer Used for Allocation
We manually found one deserialization function that does not validate the value of an
integer before using it to allocate memory (TOB-ALEO-1). We used the following rule to
identify four new instances of the same issue:

rules:
- id: u32-used-without-validation
message: "A u32 integer is used without validation in an allocation routine."
languages: [rust]
severity: ERROR
patterns:
- pattern-either:

- pattern: |
let $X = u32::read_le(...)?;
...
let $Y = $METHOD::with_capacity($X);

- pattern: |
let $X : u32 = $S::read_le(...)?;
...
let $Y = $METHOD::with_capacity($X);

- pattern-not: |
let $X = u32::read_le(...)?;
...
if (<...$X...>) {

...
}
...
let $Y = $METHOD::with_capacity($X);

Figure D.3: The u32-used-without-validation rule

Trail of Bits 90 Aleo Security Assessment
PUBLIC

https://semgrep.dev/
https://github.com/trailofbits/semgrep-rules


Structure Serialization with the Incorrect Number of Fields
We manually found an instance of struct serialization with an incorrect declared number of
fields that could lead to issues depending on the serialization format in use (TOB-ALEO-13).
We wrote the following rule, which identified one other instance of the same issue and an
instance in which more than the needed number of fields is declared. Note that this rule
has several false positive results.

rules:
- id: incorrect-serialize-struct
message: "Serializing a structure with the incorrect number of fields."
languages: [rust]
severity: ERROR
patterns:
- pattern-either:

- pattern: |
let $X = $S.serialize_struct($NAME, $T)?;
...
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 1)?;
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 2)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 3)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 3)?;
$X.serialize_field(...);
$X.serialize_field(...);
if let Some($Y) = $Z {

$X.serialize_field(...);
}
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 4)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |

Trail of Bits 91 Aleo Security Assessment
PUBLIC



let $X = $S.serialize_struct($NAME, 4)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
if let Some($Y) = $Z {

$X.serialize_field(...);
}
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 5)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 6)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 7)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 8)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
if let Some($Y) = $Z {

$X.serialize_field(...);
}
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 8)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);

Trail of Bits 92 Aleo Security Assessment
PUBLIC



$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 9)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

- pattern-not: |
let $X = $S.serialize_struct($NAME, 10)?;
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.serialize_field(...);
$X.end()

Figure D.4: The incorrect-serialize-struct rule

Matches with BitOr
We manually found instances of this pattern in the codebase and wrote a Semgrep rule to
confirm no other variants were present.

rules:
- id: matches-bitor
message: "Instances of `matches!(X, case1) | matches!(X, case2)`

should be refactored to `matches!(X, case1 | case2)`“
languages: [rust]
severity: ERROR
patterns:
- pattern-either:

- pattern: |
matches!(...) | matches!(...)

Figure D.5: The matches-bitor rule

At the time of writing this report, Semgrep v1.41.0 does not correctly parse macro tokens,
making it impossible to refine the query to ensure that it finds only instances of the

Trail of Bits 93 Aleo Security Assessment
PUBLIC



matches! macro with the same first argument (i.e., using matches!($X, ...) |
matches!($X, ...)). We have reported this behavior to Semgrep.

D.2. Dylint
Dylint is a tool for running Rust lints from dynamic libraries similar to Clippy. We
implemented a Dylint rule for finding TOB-ALEO-13 (struct serialization with an incorrect
declared number of fields). This rule does not find any new instances, but it follows a
program analysis approach and is less verbose than the Semgrep rule presented in the
previous section.

D.3. Necessist
The Necessist tool iteratively removes single statements and method calls from tests and
then runs them. If a test passes with a statement or method call removed, it could indicate
a problem in the test or in the code being tested.

D.4. cargo-llvm-cov
The cargo-llvm-cov Cargo plugin is used to generate LLVM source–based code coverage
data. The plugin can be installed via the command cargo install cargo-llvm-cov. To
run the plugin, run the cargo llvm-cov command in the crate under test.

D.5. cargo-edit
cargo-edit allows developers to quickly find outdated Rust crates. The tool can be
installed with the cargo install cargo-edit command, and the cargo upgrade
--incompatible --dry-run command can be used to find outdated crates.

D.6. Clippy
The Rust linter Clippy can be installed using rustup by running the command rustup
component add clippy. Invoking cargo clippy --workspace -- -W clippy::pedantic
in the root directory of the project runs the tool with the pedantic ruleset.

cargo clippy --workspace -- -W clippy::pedantic

Figure D.6: The invocation command used to run Clippy in the codebase

Converting the output to the SARIF file format (with, e.g., clippy-sarif) allows for an easy
inspection of the results within an IDE (e.g., using VSCode’s SarifViewer extension).

D.7. cargo-audit
The cargo-audit Cargo plugin identifies known vulnerable dependencies in Rust projects.
It can be installed using cargo install cargo-audit. To run the tool, run cargo audit
in the crate root directory.

Trail of Bits 94 Aleo Security Assessment
PUBLIC

https://github.com/returntocorp/semgrep/issues/8884
https://github.com/trailofbits/dylint
https://github.com/trailofbits/dylint/commit/454db64961530d26f3ac41426c7260edfdbe853f
https://github.com/trailofbits/necessist
https://github.com/taiki-e/cargo-llvm-cov
https://github.com/killercup/cargo-edit
https://github.com/rust-lang/rust-clippy
https://crates.io/crates/clippy-sarif
https://marketplace.visualstudio.com/items?itemName=MS-SarifVSCode.sarif-viewer
https://crates.io/crates/cargo-audit


E. Proof of Concept for TOB-ALEO-12

This appendix contains a proof of concept that shows the behavior of the
refresh_and_insert function, which causes the issue described in finding TOB-ALEO-12.

Figure E.1 shows the main.rs file, and figure E.2 shows the required Cargo.toml file.
Figure E.3 shows the output of the program, where we can see that the
refresh_and_insert call to overwrite the item with a key value of 0 does not return the
previously existing entry; instead, it returns a None.

use linked_hash_map::LinkedHashMap;
use parking_lot::RwLock;
use std::hash::Hash;

const MAX_CACHE_SIZE: usize = 4;

fn refresh<K: Eq + Hash, V>(map: &RwLock<LinkedHashMap<K, V>>) {
let mut map_write = map.write();
while map_write.len() >= MAX_CACHE_SIZE {

map_write.pop_front();
}

}

fn refresh_and_insert<K: Eq + Hash, V>(map: &RwLock<LinkedHashMap<K, V>>,
key: K, value: V) -> Option<V> {
refresh(map);
map.write().insert(key, value)

}

fn main() {
let map : RwLock<LinkedHashMap<i64, i64>> =

RwLock::new(LinkedHashMap::with_capacity(MAX_CACHE_SIZE));

{ // use scope so the underlying lock is released afterwards
let mut w = map.write();
for i in 0..MAX_CACHE_SIZE {

let i = i.try_into().unwrap();
w.insert(i, 10+i);

}
}

println!("Printing map items:");
for i in 0..6 {

let r = map.read();
let v = r.get(&i);
println!("k={} v={:?}", i, v);

}

let val = refresh_and_insert(&map, 0, 123);
println!("refreshed k=0 v={:?}", val);

Trail of Bits 95 Aleo Security Assessment
PUBLIC



println!("Printing map items:");
for i in 0..6 {

let r = map.read();
let v = r.get(&i);
println!("k={} v={:?}", i, v);

}
}

Figure E.1: The proof of concept code

[package]
name = "ex"
version = "0.1.0"
edition = "2021"

[dependencies]
parking_lot = "0.12"
linked-hash-map = "0.5"

Figure E.2: The Cargo.toml file for the code in figure E.1

$ cargo run
Printing map items:
k=0 v=Some(10)
k=1 v=Some(11)
k=2 v=Some(12)
k=3 v=Some(13)
k=4 v=None
k=5 v=None
refreshed k=0 v=None
Printing map items:
k=0 v=Some(123)
k=1 v=Some(11)
k=2 v=Some(12)
k=3 v=Some(13)
k=4 v=None
k=5 v=None

Figure E.3: The output from the code in figure E.1

Trail of Bits 96 Aleo Security Assessment
PUBLIC



F. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

From November 16 to November 22, 2023, Trail of Bits reviewed the fixes and mitigations
implemented by the Aleo team for the issues identified in this report. We reviewed each fix
to determine its effectiveness in resolving the associated issue.

In summary, of the 31 issues described in this report, Aleo has resolved 20 issues, has
partially resolved five issues, and has not resolved six issues. For additional information,
please see the Detailed Fix Review Results below.

ID Title Status

1 Denial-of-service vectors in FromBytes implementations Partially
Resolved

2 Faulty validation enables more than the intended number of inputs
on finalize commands

Resolved

3 Parsing differences between the aleo.abnf grammar and the
implementation

Partially
Resolved

4 Function, closure, and finalize deserialization routines allow large
memory allocations

Resolved

5 Unvalidated destination type for commit instructions Resolved

6 Unnecessary overflow checks Resolved

7 Missing upper bound validation with MAX_STRUCT_ENTRIES Resolved

8 Discrepancy between the matches_record function implementation
and its documentation

Resolved

Trail of Bits 97 Aleo Security Assessment
PUBLIC



9 The /testnet3/node/env API endpoint provides binary path and
repository information

Resolved

10 Maximum peer message limit is off by one Resolved

11 The peers request/response flow allows for local IP with non-node
port

Resolved

12 The refresh_and_insert function may not return previously seen
timestamp

Resolved

13 Structure serialization does not declare the correct number of fields Resolved

14 Potential overflow in the total finalize cost Resolved

15 The is_sequential function allows u64::MAX to 0 transitions Unresolved

16 Requests for more peers may not use newly connected peers Unresolved

17 Committee::new allows genesis committees with more than four
members to be created

Unresolved

18 GitHub CI actions versions are not pinned Unresolved

19 The committee sorting tests do not consider whether the validator is
open to staking

Resolved

20 Impossible match case in authority verification routine Resolved

21 The BFT::is_linked function does not properly determine whether two
certificates are linked

Resolved

Trail of Bits 98 Aleo Security Assessment
PUBLIC



22 Peer is not removed from connecting_peers when handshake times
out

Partially
Resolved

23 Rest API allows any origin Partially
Resolved

24 Garbage collection does not collect the next_gc_round Resolved

25 Fee verification is off by one Resolved

26 Potential block reward truncation and overflow Resolved

27 Saturated additions and subtractions can cause inconsistencies Resolved

28 IndexSet::remove does not preserve the order of the IndexSet Unresolved

29 The batch certificate ID calculation does not include the number of
signatures in the preimage

Partially
Resolved

30 Missing validations in block metadata and header validation functions Unresolved

31 The order of the saturating_add and checked_sub operations is not
documented

Resolved

Trail of Bits 99 Aleo Security Assessment
PUBLIC



Detailed Fix Review Results
TOB-ALEO-1: Denial-of-service vectors in FromBytes implementations
Partially resolved in PR #2167. All but a few of the FromBytes::read_le implementations
have been updated to perform bounds checks before allocating vectors. Files in the
sonic_pc directory, however, remain unchanged.

The client provided the following context for this finding’s fix status:

Note: we are skipping some of the bound checks in sonic_pc/data_structures because it
won't practically hit these larger values.

TOB-ALEO-2: Faulty validation enables more than the intended number of inputs on
finalize commands
Resolved in PR #1986. The off-by-one errors were resolved in the affected files, and tests
were added in accordance with our long-term recommendation.

TOB-ALEO-3: Parsing differences between the aleo.abnf grammar and the
implementation
Partially resolved in PR #62. The Aleo grammar files were updated to address several
concerns. The finalize, closure, call, sign.verify, rand.chacha, and branch
statements were modified to match the snarkVM implementation. At the time of writing the
fix review, the associated FromBytes implementation still does not validate that at least
one command is present in the input.

TOB-ALEO-4: Function, closure, and finalize deserialization routines allow large
memory allocations
Resolved in PR #1988. Checks were added to each of the deserialization routines to ensure
that invalid counts cannot be specified.

TOB-ALEO-5: Unvalidated destination type for commit instructions
Resolved in PR #1989. The destination type check was added to the
CommitInstruction::new function, which is used by the read_le function.

TOB-ALEO-6: Unnecessary overflow checks
Resolved in PR #1990. Lines for the unnecessary checks have been removed in accordance
with our recommendations.

TOB-ALEO-7: Missing upper bound validation with MAX_STRUCT_ENTRIES
Resolved in commits 5c1854e and 5e3e70e. Upper bound checks were added in
accordance with our recommendations.

TOB-ALEO-8: Discrepancy between the matches_record function implementation and
its documentation

Trail of Bits 100 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/pull/2167
https://github.com/AleoHQ/snarkVM/pull/1986
https://github.com/AleoHQ/grammars/pull/62
https://github.com/AleoHQ/snarkVM/pull/1988
https://github.com/AleoHQ/snarkVM/pull/1989
https://github.com/AleoHQ/snarkVM/pull/1990
https://github.com/AleoHQ/snarkVM/commit/54c26e361a986fb6c1a941a8748a4384a5c1854e
https://github.com/AleoHQ/snarkVM/commit/8ac0987523daca10bc5d4502d549fc5b65e3e70e


Resolved in PR #2163. The incorrect note was removed from inline documentation, as
recommended. No further tests were added to the codebase.

TOB-ALEO-9: The /testnet3/node/env API endpoint provides binary path and
repository information
Resolved in PR #2653. The testnet3/node/env API endpoint was removed entirely,
obviating the issue.

TOB-ALEO-10: Maximum peer message limit is off by one
Resolved in PR #2823. The maximum message limit check was fixed, and the relevant magic
numbers were moved into module-level constants with appropriate names.

TOB-ALEO-11: The peers request/response flow allows for local IP with non-node port
Resolved in PR #2833. Checks were added to filter out unspecified and broadcast IP
addresses. No new tests were added.

TOB-ALEO-12: The refresh_and_insert function may not return previously seen
timestamp
Resolved in PR #2823. The entry for the given key is now retrieved prior to the refresh and
is then returned. No new tests were added.

TOB-ALEO-13: Structure serialization does not declare the correct number of fields
Resolved in PR #2157. Calls to serialize_struct now declare the correct number of
fields for the structure being serialized. No new tests were added.

TOB-ALEO-14: Potential overflow in the total finalize cost
Resolved in PR #2158. The cited code has been updated to prevent overflows.

TOB-ALEO-15: The is_sequential function allows u64::MAX to 0 transitions
Unresolved. The client provided the following context for this finding’s fix status:

Won’t fix, previous will not overflow based on usage

TOB-ALEO-16: Requests for more peers may not use newly connected peers
Unresolved. The client provided the following context for this finding’s fix status:

Won't fix, no vulnerability, however open to improvements in the future

TOB-ALEO-17: Committee::new allows genesis committees with more than four
members to be created
Unresolved. The client provided the following context for this finding’s fix status:

Won't fix, Committee::new used for testing

TOB-ALEO-18: GitHub CI actions versions are not pinned

Trail of Bits 101 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/pull/2163
https://github.com/AleoHQ/snarkOS/pull/2653
https://github.com/AleoHQ/snarkOS/pull/2823
https://github.com/AleoHQ/snarkOS/pull/2833
https://github.com/AleoHQ/snarkOS/pull/2823
https://github.com/AleoHQ/snarkVM/pull/2157
https://github.com/AleoHQ/snarkVM/pull/2158


Unresolved. The client provided the following context for this finding’s fix status:

Won't fix at this time, does not touch any unit tests

TOB-ALEO-19: The committee sorting tests do not consider whether the validator is
open to staking
Resolved in PR #2162 (on the mainnet branch). The is_open field is now ignored during
sorting, leading to a deterministic “stake, then address” ordering. Tests were added based
on the sample code provided.

The client provided the following context for this finding’s fix status:

Might break current testnet, will merge into mainnet branch

TOB-ALEO-20: Impossible match case in authority verification routine
Resolved in PR #2159. The impossible case was removed from the routine.

TOB-ALEO-21: The BFT::is_linked function does not properly determine whether two
certificates are linked
Resolved in PR #2718. The is_linked function was removed and the surrounding logic
was simplified.

TOB-ALEO-22: Peer is not removed from connecting_peers when handshake times out
Partially resolved in PR #2729. The fixes address the issue by creating a ConnectingPeer
struct that will remove itself from the gateway’s connected peers when the handshake
times out. However, at the time of writing the fix review, the changes have not been
merged.

TOB-ALEO-23: Rest API allows any origin
Partially resolved in PR #2825. The fixes address the issue by having the system accept a
list of allowed origins on the command line. This list is then passed to the CORS layer for
origin enforcement. However, at the time of writing the fix review, the changes have not
been merged.

TOB-ALEO-24: Garbage collection does not collect the next_gc_round
Resolved in PR #2826. The iteration bounds were changed in accordance with our
recommendations. No new tests were added.

TOB-ALEO-25: Fee verification is off by one
Resolved in PR #2160. The fee is now allowed to equal MAX_FEE. No new tests were added.

TOB-ALEO-26: Potential block reward truncation and overflow

Trail of Bits 102 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/pull/2162
https://github.com/AleoHQ/snarkVM/pull/2159
https://github.com/AleoHQ/snarkOS/pull/2718
https://github.com/AleoHQ/snarkOS/pull/2729
https://github.com/AleoHQ/snarkOS/pull/2825
https://github.com/AleoHQ/snarkOS/pull/2826
https://github.com/AleoHQ/snarkVM/pull/2160


Resolved in PR #2161. annual_reward is now calculated using a single division, removing
the risk of overflow. The total block reward computation was kept in place. The client
provided the following context:

We choose not to use checked_add for overflow checks in block_reward +
coinbase_reward / 2 + transaction_fee, because an overflow should never be hit
with our current parameters.

TOB-ALEO-27: Saturated additions and subtractions can cause inconsistencies
Resolved in PR #2832. The integer type was updated to u32, per our recommendations,
which will cover reasonable reuse and scaling scenarios. No further documentation or
error-handling code was added.

TOB-ALEO-28: IndexSet::remove does not preserve the order of the IndexSet
Unresolved. The client provided the following context for this finding’s fix status:

Won't fix: Ordering does not matter

TOB-ALEO-29: The batch certificate ID calculation does not include the number of
signatures in the preimage
Partially resolved. The client provided the following context for this finding’s fix status:

Won't fix: BatchCertificate serialization has changed.

A review of the BatchCertificate code shows that newer certificates do not include the
hash-based certificate ID. However, the original certificate code will remain in the codebase
until all clients are upgraded.

TOB-ALEO-30: Missing validations in block metadata and header validation functions
Unresolved. The client provided the following context for this finding’s fix status:

Nothing to fix.
- solutions root can be zero.
- cumulative_weight, proof_targets, and last_coinbase_target
checks are done in BlockHeader

TOB-ALEO-31: The order of the saturating_add and checked_sub operations is not
documented
Resolved. References to the function have been commented out in the codebase, but the
function remains present. When a method has been deprecated, we recommend removing
it completely to prevent accidental reference or reuse in the future. The client provided the
following context for this finding’s fix status:

Won’t fix: Method has been deprecated

Trail of Bits 103 Aleo Security Assessment
PUBLIC

https://github.com/AleoHQ/snarkVM/pull/2161
https://github.com/AleoHQ/snarkOS/pull/2832


G. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Fix Status

Status Description

Undetermined The status of the issue was not determined during this engagement.

Unresolved The issue persists and has not been resolved.

Partially Resolved The issue persists but has been partially resolved.

Resolved The issue has been sufficiently resolved.

Trail of Bits 104 Aleo Security Assessment
PUBLIC


